The Emergent Science of the Internet and the Worldwide Web

> Christos H. Papadimitriou UC Berkeley Google christos

• Goal of TCS (1950-2000):

Develop a mathematical understanding of the capabilities and limitations of the von Neumann computer and its software –the dominant and most novel computational artifacts of that time

(Mathematical tools: combinatorics, logic)

• What should Theory's goals be today?

onassis foundation school, july 7

The Internet

- Huge, growing, open, end-to-end
- Built and operated by 15.000 companies in various (*and varying*) degrees of competition
- The first computational artefact that must be studied by observations, measurements, and the development of falsifiable theories (like the universe, the brain, the cell, the market)

The Internet (cont.)

- *The platform for the worldwide web,* an information repository that is to an unprecedented degree universal, unstructured, heterogeneous, available, and critical
- Theoretical understanding urgently needed
- Tools: math economics and game theory, probability, graph theory, spectral theory

Sources on Game Theory and Microeconomics

- Osborne and Rubinstein A Course in Game Theory, MIT, 1994
- Mas-Colell, Whinston, and Greene *Microeconomic Theory*, Oxford 1995
- Kreps A Course on Microeconomic Theory
- Varian *Microeconomics*
- <u>http://www.cs.berkeley.edu/~christos/games</u> /cs294.html and .../focs01.ppt

(NB: also, many players)

matching pennies

1,-1	-1,1
-1,1	1,-1

prisoner's dilemma

chicken

concepts of rationality

- undominated strategy (problem: too weak)
- (weakly) dominating srategy (*alias* "duh?")
 (problem: too strong, rarely exists)
- Nash equilibrium (or double best response) (problem: may not exist)
- randomized Nash equilibrium

Theorem [Nash 1952]: Always exists.

if a digraph with all in-degrees ≤ 1 has a source, then it must have a sink \Rightarrow Sperner's Lemma \Rightarrow Brouwer's fixpoint Theorem $(\Rightarrow$ Kakutani's Theorem \Rightarrow market equilibrium) ⇒Nash's Theorem \Rightarrow min-max theorem for zero-sum games \Rightarrow linear programming duality

Sperner's Lemma: Any "legal" coloring of the triangulated simplex has a trichromatic triangle

Sperner \Rightarrow Brouwer

Brouwer's Theorem: Any continuous function from the simplex to itself has a fixpoint.

- **Sketch:** Triangulate the simplex
- Color vertices according to "which direction they are mapped"
- Sperner's Lemma means that there is a triangle that has "no clear direction"

Sequence of finer and finer triangulations, convergent subsequence of the centers of Sperner triangles, QED

Brouwer \Rightarrow Nash

For any pair of mixed strategies x,y (distributions over the strategies) define $\varphi(x,y) = (x', y')$, where x' maximizes payoff₁(x',y) - $|x - x'|^2$, and similarly for y'.

Any Brouwer fixpoint is now a Nash equilibrium

$Nash \Rightarrow von Neumann$

If game is zero-sum, then double best response is a max-min pair:

Therefore, $\min_{y} \max_{x} xAy^{T} = \max_{x} \min_{y} xAy^{T}$

The critique of mixed Nash equilibrium

- Is it really rational to randomize?
 (*cf*: bluffing in poker, tax audits)
- If (x,y) is a Nash equilibrium, then any y' with the same support is as good as y (corollary: problem is combinatorial!)
- Convergence/learning results mixed
- There may be too many Nash equilibria

is it in P?

The price of anarchy

cost of worst Nash equilibrium "socially optimum" cost

[Koutsoupias and P, 1998]

Also: [Spirakis and Mavronikolas 01, Roughgarden 01, Koutsoupias and Spirakis 01]

Selfishness can hurt you!

Worst case?

Price of anarchy = 2 (4/3 for linear delays) [Roughgarden and Tardos, 2000, Roughgarden 2002]

The price of the Internet architecture?

Simple net creation game (with Fabrikant, Maneva, Shenker PODC 03)

- Players: Nodes $V = \{1, 2, ..., n\}$
- Strategies of node i: all possible subsets of
 {[i,j]: j ≠ i}
- Result is *undirected* graph $G = (s_1, ..., s_n)$
- Cost to node i:

$$c_{i}[G] = \alpha \cdot |s_{i}| + \sum_{i} \operatorname{dist}_{G}(i,j) \cdot (\operatorname{traffic}_{ij})$$

cost of edges delay costs (W_i, W_i)

Nash equilibria?

- (NB: Best response is NP-hard...)
- Let us fix $w_i = 1$
- If $\alpha < 1$, then the only Nash equilibrium is the clique
- If $1 < \alpha < 2$ then social optimum is clique, Nash equilibrium is the star (price of anarchy = 4/3)

Nash equilibria (cont.)

- $\alpha > 2$? The price of anarchy is at least 3
- Upper bound: $\sqrt{\alpha}$
- **Conjecture:** For large enough α, all Nash equilbria are trees.
- If so, the price of anarchy is at most 5.
- **General** w_i : Are the degrees of the Nash equilibria proportional to the w_i 's?

mechanism design (or *inverse* game theory)

- agents have utilities but these utilities are known *only to them*
- game designer prefers certain outcomes depending on players' utilities
- designed game (mechanism) has designer's goals as dominating strategies (or other rational outcomes)

mechanism design (math)

- *n* players, set *K* of outcomes, for each player *i* a possible set U_i of utilities of the form $u: K \rightarrow R^+$
- designer preferences $P: U_1 \times \ldots \times U_n \rightarrow 2^K$
- mechanism: strategy spaces S_i , plus a mapping $G: S_1 \times \ldots \times S_n \rightarrow K$

Theorem (The Revelation Principle): If there is a mechanism, then there is one in which all agents truthfully reveal their secret utilities (direct mechanism).

Proof: common-sense simulation

Theorem (Gibbard-Satterthwaite): If the sets of possible utilities are too rich, then only dictatorial *P*'s have mechanisms.Proof: Arrow's Impossibility Theorem

- **but...** if we allow mechanisms that use Nash equilibria instead of dominance, then almost anything is implementable
- but... these mechanisms are extremely complex and artificial

(complexity-theoretic critique would be welcome here...)

• **but...** if outcomes in *K* include payments $(K = K_0 \times R^n)$ and utilities are *quasilinear* (utility of "core outcome" plus payment) *and designer prefers to optimize the sum of core utilities*, then the Vickrey-Clarke-Groves mechanism works

e.g., Vickrey auction

- sealed-highest-bid auction encourages gaming and speculation
- Vickrey auction: Highest bidder wins, pays second-highest bid

Theorem: Vickrey auction is a truthful mechanism.

Theorem: It maximizes social benefit *and* auctioneer expected revenue.

e.g., shortest path auction

pay *e* its declared cost c(e), plus a bonus equal to $dist(s,t)|_{c(e) = \infty}$ - dist(s,t)

Theorem [Suri & Hershberger 01]: Payments can be computed by one shortest path computation.

Problem:

Theorem [Elkind, Sahai, Steiglitz, 03]: This is inherent for truthful mechanisms.

onassis foundation school, july 7

But...

- ...in the Internet (the graph of autonomous systems) VCG overcharge would be only about 30% on the average [FPSS 2002]
- Could this be the manifestation of rational behavior at network creation?

Also...

- In Internet routing, VCG[e] *depends on the origin and destination*.
- Can be computed with little overhead on top of BGP (the standard protocol for interdomain routing).
- Theorem [with Mihail and Saberi, 2003]: In a random graph with average degree d, the expected VCG overcharge is constant (*conjectured:* ~1/d)

e.g., 2-processor scheduling [Nisan and Ronen 1998]

- two players/processors, *n* tasks, each with a different execution time on each processor
- each execution time is known only to the appropriate processor
- designer wants to minimize makespan
- (= maximum completion time)
- each processor wants to minimize its own completion time

Idea: Allocate each task to the most efficient processor (i.e., minimize total work). Pay each processor for each task allocated to it an amount equal to the time required for it *at the other processor*

Fact: Truthful and 2-approximate

Theorem (Nisan-Ronen) : No mechanism can achieve ratio better than 2

- **Sketch:** By revelation, such a mechanism would be truthful.
- wlog, Processor 1 chooses between proposals of the form (partition, payment), where the payment depends only on the partition and Processor 2's declarations

Theorem (Nisan-Ronen, continued):

Suppose all task lengths are 1, and Processor 1 chooses a partition and a payment

If we change the 1-lengths in the partition to ε and all others to $1 + \varepsilon$, it is not hard to see that the proposals will remain the same, and Processor 1 will choose the same one

But this is ~2-suboptimal, QED

Also: k processors, randomized 7/4 algorithm.

We wish to design a protocol that will result in the computation of:

- x_i (= 0 or 1, will *i* get it?)
- v_i (how much will *i* pay? (0 if x = 0))

protocol must obey a set of desiderata:

- $0 \le v_i \le u_{i}$
- $\lim_{u_i \to \infty} x_i = 1$
- strategy proofness: $(w \stackrel{\text{def}}{=} u_i \cdot x_i v_i)$ $w_i (u_1 \dots u_i \dots u_n) \ge w_i (u_1 \dots u'_i \dots u_n)$

• welfare maximization

• budget balance

$$\sum v_i = c \ (T[x])$$

But...

In the context of the Internet, there is another desideratum:

Tractability: the protocol should require few (constant? logarithmic?) messages per link.

This new requirement changes drastically the space of available solutions.

- $0 \le v_i \le u_i$
- $\lim_{u_i \to \infty} x_i = 1$
- strategy proofness: $(w \stackrel{\text{def}}{=} u_i \cdot x_i v_i)$ $w_i (u_1 \dots u_i \dots u_n) \ge w_i (u_1 \dots u'_i \dots u_n)$

- welfare maximization
- $\sum w_i = \max$ \prod marginal cost mechanism
- budget balance $\sum v_i = c (T[x])$

Shapley mechanism

onassis foundation school, july 7

Bottom-up phase

Top-down phase

 $v_i = \max\{0, u_i - D\}$

Theorem: The marginal cost mechanism is tractable.

onassis foundation school, july 7

Theorem: "The Shapley value mechanism is intractable."

Model: Nodes are linear decision trees, and they exchange messages that are linear combinations of the u's and c's

It reduces to checking whether Au > Bcby two sites, one of which knows *u* and the other *c*, where *A*, *B* are nonsingular

agents drop out one-by-one

onassis foundation school, july 7

Algorithmic Mechanism Design

- central problem
- few results outside "social welfare maximization" framework (n.b.[Archer and Tardos 01])
- VCG mechanism often breaks the bank
- approximation rarely a remedy (n.b.[Nisan and Ronen 99, Jain and Vazirani 01])
- wide open, radical departure needed

algorithmic aspects of auctions

- Optimal auction design [Ronen 01]
- Combinatorial auctions [Nisan 00]
- Auctions for digital goods [Goldberg, Hartline, 01]
- On-line auctions [Kearns, Wong 02]
- Communication complexity of combinatorial auctions [Nisan-Segal 01]

So.... Game Theory and Math Economics:

- Deep and elegant
- Different
- Exquisite interaction with CS
- Relevant to the Internet
- Wide open algorithmic aspects
- Mathematical tools of choice

for the "new TCS"