The Social Cost of Sharing

Hal R. Varian
hal@sims.berkeley.edu

University of California, Berkeley

Introduction

- Often IP is shared via libraries, license servers, video rental stores, Napster, etc.
- If IP is intended to be shared it is often priced higher than IP meant to be consumed individually.
- Sometimes price discrimination can be used, but if this is infeasible flat pricing generally reflects dominant use

Questions

- High price encourages sharing \rightarrow sharing encourages high prices. If sharing is costly, equilibrium is inefficient.
- What happens when producers set prices to discourage sharing?
- What about government penalties to discourage sharing?
- What kinds of IP are not produced due to sharing?

Baseline case

n consumers, identical value v. IP costs D to develop, zero to distribute. A price p is viable if:
(2)
(2)

$$
\begin{align*}
& v \geq p \tag{1}\\
& p \geq d
\end{align*}
$$

where $d=D / n$.
Two interesting viable prices: the monopoly price $p_{m}=v$ and the zero profit price $p_{z}=d$.

Sharing

- Groups of size k form, each individual paying p / k. Sales are n / k.
- Transactions cost to sharing of t
- Viability now requires

$$
\begin{align*}
v-p / k-t & \geq 0 \tag{3}\\
p \frac{n}{k} & \geq D .
\end{align*}
$$

- So p is viable if:

$$
(v-t) k \geq p \geq d k
$$

Dynamics

- Monopoly case: $p_{m}=(v-t) k$
- Monopoly dynamics: At p_{m} people may want to share. This pushes price up even further. In equilibrium consumers end up with zero surplus, monopolist is worse off.
- Zero-profit dynamics: price is pushed up by sharing, consumers made worse off.

Social cost of sharing

Figure 1: Shaded area indicates products that won't be produced due to sharing.

Limit pricing monopolist

- Suppose monopolist sets price first in order to discourage group formation. Must choose p so that:

$$
\frac{p}{k}+t \geq p
$$

- This means $p_{\ell}=\frac{k}{k-1} t$.
- This is more profitable than allowing the group to form when

$$
\left(\frac{2 k-1}{k-1}\right) t \geq v
$$

- LHS varies between $2 t$ and $3 t$.

Social cost of sharing

Figure 2: Shaded area indicates lost value.

Summary of limit pricing case

- No social cost to sharing for goods with low value, low development costs, or large numbers of users. Threat of sharing makes monopolist cut its price.
- Limit pricing doesn't work for zero-profit producer. Groups form and make themselves worse off.

Penalties for sharing

- State or monopolist can impose a cost c on those who share. Initially look at case where $c<v-t$. Replace t by $t+c$ to find Nash equilibrium:
(5) $\quad p_{m}=(v-t-c) k$
(6) $\quad \pi_{m}=(v-t-c) k n-D$.
- If $v \geq t+c$ then profit is decreasing in c
- In this case, c is not large enough to discourage sharing, but makes monopolist worse off.

Penalties for sharing, cont.

- If $c>v-t$ or limit price monopolist, we have

$$
\begin{align*}
p_{\ell} & =\frac{k}{k-1}(t+c) \tag{7}\\
\pi_{\ell} & =\frac{k}{k-1}(t+c) n-D .
\end{align*}
$$

- Monopolist wants $c \geq v-\frac{k-1}{k} t$. Monopolist prices at v, no groups form, outcome is efficient.

Endogenous groups

- Suppose t depends on size of group, e.g., $t=w(k-1)$.
- Optimal group size solves

$$
\min _{k} \frac{p}{k}+w(k-1)
$$

- Answer is $k=\sqrt{p / w}$
- Minimized value of t is $2 \sqrt{p w}-w$.
- A price p is viable if it satisfies:
(9)
(10)

$$
\begin{aligned}
v-2 \sqrt{p w}+w & \geq 0 \\
\sqrt{p w} & \geq d
\end{aligned}
$$

Social cost of sharing

Monopoly price is

$$
p_{m}=\frac{1}{w}\left(\frac{v+w}{2}\right)^{2}
$$

Summary of endogenous groups case

- Low-value, low-cost goods are not worth sharing and will be produced anyway
- High-value goods ($v>2 d$) will be produced and shared
- Limit pricing is irrelevant in this case

