The Social Cost of Sharing

Hal R. Varian

hal@sims.berkeley.edu

University of California, Berkeley

Introduction

- Often IP is shared via libraries, license servers, video rental stores, Napster, etc.
- If IP is intended to be shared it is often priced higher than IP meant to be consumed individually.
- Sometimes price discrimination can be used, but if this is infeasible flat pricing generally reflects dominant use

Questions

- High price encourages sharing → sharing encourages high prices. If sharing is costly, equilibrium is inefficient.
- What happens when producers set prices to discourage sharing?
- What about government penalties to discourage sharing?
- What kinds of IP are not produced due to sharing?

Baseline case

n consumers, identical value v. IP costs D to develop, zero to distribute. A price p is *viable* if:

(1)
$$v \ge p$$

(2) $p \ge d$,

where d = D/n.

Two interesting viable prices: the monopoly price $p_m = v$ and the zero profit price $p_z = d$.

Sharing

- Groups of size k form, each individual paying p/k. Sales are n/k.
- Transactions cost to sharing of t
- Viability now requires

(3)
$$v - p/k - t \ge 0$$

(4) $p\frac{n}{k} \ge D.$

• So *p* is viable if:

$$(v-t)k \ge p \ge dk$$

Dynamics

- Monopoly case: $p_m = (v t)k$
- Monopoly dynamics: At p_m people may want to share. This pushes price up even further. In equilibrium consumers end up with zero surplus, monopolist is worse off.
- Zero-profit dynamics: price is pushed up by sharing, consumers made worse off.

Social cost of sharing

d=unit cost

Figure 1: Shaded area indicates products that won't be produced due to sharing.

Limit pricing monopolist

• Suppose monopolist sets price first in order to discourage group formation. Must choose p so that:

$$\frac{p}{k} + t \ge p.$$

• This means
$$p_{\ell} = \frac{k}{k-1}t$$
.

• This is more profitable than allowing the group to form when

$$\left(\frac{2k-1}{k-1}\right)t \ge v.$$

• LHS varies between 2t and 3t.

Social cost of sharing

Figure 2: Shaded area indicates lost value.

Summary of limit pricing case

- No social cost to sharing for goods with low value, low development costs, or large numbers of users. Threat of sharing makes monopolist cut its price.
- Limit pricing doesn't work for zero-profit producer. Groups form and make themselves worse off.

Penalties for sharing

• State or monopolist can impose a cost c on those who share. Initially look at case where c < v - t. Replace t by t + c to find Nash equilibrium:

(5)
$$p_m = (v - t - c)k$$

(6) $\pi_m = (v - t - c)kn - D.$

- If $v \ge t + c$ then profit is *decreasing* in c
- In this case, c is not large enough to discourage sharing, but makes monopolist worse off.

Penalties for sharing, cont.

• If c > v - t or limit price monopolist, we have

(7)
$$p_{\ell} = \frac{k}{k-1}(t+c)$$

(8) $\pi_{\ell} = \frac{k}{k-1}(t+c)n - D.$

• Monopolist wants $c \ge v - \frac{k-1}{k}t$. Monopolist prices at v, no groups form, outcome is efficient.

Endogenous groups

- Suppose t depends on size of group, e.g., t = w(k - 1).
- Optimal group size solves

$$\min_{k} \frac{p}{k} + w(k-1).$$

- Answer is $k = \sqrt{p/w}$
- Minimized value of t is $2\sqrt{pw} w$.
- A price p is viable if it satisfies:

(9)
$$v - 2\sqrt{pw} + w \ge 0,$$

(10) $\sqrt{pw} \ge d.$

Social cost of sharing

Monopoly price is

$$p_m = \frac{1}{w} \left(\frac{v+w}{2}\right)^2$$

Summary of endogenous groups case

- Low-value, low-cost goods are not worth sharing and will be produced anyway
- High-value goods (v > 2d) will be produced and shared
- Limit pricing is irrelevant in this case