

C. Courcoubetis AUEB

Economics = incentives

- The taxi tariff w = a + bT + cX
- The "all-you can eat" restaurants: flat vs usage-based
- The Internet café tariff: dynamic pricing
- Pricing a single link

Questions

- Over-dimensioning of networks?
- Will congestion exist in the future?
- How demand will grow?
- What will be the future applications?
- Will the "real" Internet ever exist?
- Telecommunications network just like the electrical?
- Power of position in the value chain?

Course outline

- Consumer and producer model: utility and demand function, cost and production function, social welfare and marginal cost pricing
- Application in networks: charging as a control mechanism, examples
- Externalities, congestion pricing, p2p
- Information
- Cost recovery

Basic economic concepts

The context

- Communication services are economic goods
- **Demand factors:** amounts of services purchased by users
 - utility of using a service, demand elasticity
- Supply factors: amounts of services produced
 - technology of network elements, service control architecture, cost of production
- Market model: models interaction and competition
- Prices: control mechanism
 - control demand and production, deter new entry
 - provide income to cover costs
 - structure and value depends on underlying model

Economic models and tariffs

- Prices result from the solution of economic models
- Three major contexts for deriving optimal prices
 - surplus maximization: standard market models with <u>actual</u> competition: monopoly, oligopoly, perfect competition
 - stability under competition and fairness: sustainability against <u>potential</u> entry, recovering costs, fairness w.r.t. cost causation, no subsidization
 - asymmetric information models: principal-agent models, hidden action and hidden information

The consumer

The consumer's problem

Consumers:

- utility function u(x) increasing, concave
- consumer surplus (net benefit): u(x) charge for x
- solve optimisation problem (linear prices):

$$x(p) = \arg \max[u(x) - px]$$
• at optimum $p = u'(x)$

$$p = u'(x)$$

The demand curve

 $x(p) \coloneqq \arg \max\{u(x) - px\}$

Network Economics - 10

The producer

The producer's problem

• **Producer:** profit function (producer surplus):

$$\pi(y) = yp(y) - c(y), y \in Y$$

Monopoly:
$$\max_{y \in Y} [p(y)y - c(y)] \xrightarrow{p(y)} \xrightarrow{p(y)} \xrightarrow{p(y)} \xrightarrow{y}$$

Perfect competition:
$$\max_{y \in Y} [py - c(y)], \text{ for given } p$$

Oligopoly:
$$\max_{y \in Y} [p(y + \mathbb{Z})y - c(y)]$$

Regulation: fixed p , produce $y = y(p)$

The producer in a competitive market

Competitive market $D(p) = \begin{cases} 0 \text{ if } p > \overline{p} \\ any \text{ amount produced if } p = \overline{p} \\ \infty \text{ if } p < \overline{p} \end{cases}$

Producer solves: $\max_{y} py - c(y)$ for $p = \overline{p}$

Network Economics - 13

The social planner

The social planner's problem

Network Economics - 15

Setting prices equal to marginal cost

- The social planner sets prices equal to marginal cost at the level of production that satisfies demand
- Prices (may) converge to SW optimum

Market mechanisms and competitive equilibria

Competitive equilibrium

- Every participant in the market is small, can not affect prices
- Equilibrium: stable point where production = demand, price *p*

Capacity constraints

- Total amount of resource available = C
- Maximization problem:

$$\max_{\{x_i\}} \sum_i u_i(x_i) \quad s.t. \quad \sum_i x_i \le C \quad (1)$$

• Mathematical solution: maximize the Lagrangian

$$\max_{\{x_i\}} L(\lambda, x_1, ..., x_n) = \sum_i u_i(x_i) - \lambda(\sum_i x_i - C)$$

The optimal point of (1) is characterized by λ , { x_i } for which:

$$\sum_{i} x_{i} = C, \ \frac{\partial u_{i}}{\partial x_{i}} = \lambda$$

- Problem solution with market mechanism: use price $p = \lambda$
- Each user solves: $\frac{\partial u_i}{\partial x_i} = p$
- λ = shadow cost of capacity

Network Economics - 19

Market mechanisms

- 1. Network sets price p^t , users post their demands $x_i^t(p^t)$
- 2. Network computes excess demand $z^t = \sum_i x_i^t C$
- 3. Network updates price : $p^{t+1} = p^t + \alpha z^t$, $0 < \alpha < 1$

Under general conditions, $p^t \rightarrow \lambda$ where λ is the Lagrange multiplier in (1)

Observe:

- The optimum of (1) is achieved by a decentralized mechanism
- The network does not need to know the utilities of the users

Strategy issues

- Why should users respond truthfully their $x_i(p)$?
- it may be profitable to cheat!
- In a case of 2 unequal users, the large user may pretend he is small

Lock-in generates profits

- Changing providers may involve switching costs
- These result in Lock-in: a provider may raise prices in equilibrium above marginal costs and still retain customers

A model of switching cost

$$p_1 + \frac{p_1}{r} = p + \frac{p}{r} + s - d$$
, \leftarrow customer indifferent to switch

 $p-c+\frac{p-c}{r}-d=0, \quad \longleftarrow \text{ new entrant balances costs}$

$$\Rightarrow p_1 - c + \frac{p_1 - c}{r} = s \Leftrightarrow p_1 = c + \frac{r}{1 + r}s$$

Network Economics - 23

Example: Pricing in communication networks

The utility function

- Consumers are characterized by the utility function u(x)
 - translate into monetary units the benefit of the consumer from the use of the particular network resource
 - has the meaning of trading, reselling

$$u_A(10) = 5, u_B(10) = 2$$

 $u(x_1, x_2)$

Pricing

- Types of charging:
 - fixed charge: connection cost
 - variable charge: cost related with the size of consumption
 - fixed + variable part
- Variable part: recovery of usage cost, control mechanism (of priority) of consumer

Cost = 1\$/unit

Connection Cost = 5\$

Cost based charging: 5 + xEvery user receives $x = C_{max} / 2 = 5$ Is it economically fair?

Network Economics - 26

Pricing as a control mechanism

- Service provider does not know the utility function of the consumers
- The consumers are looking for their own benefit
- The quantity of the available service is finite
- How can the total benefit of the consumers be maximized? The network profit?
- Price Mechanism!

How much should I ask if the price is *p* ;

How the problem is specialized for networks;

A possible analysis of a charge

- In general we can analyze the total charge the user is paying as
 - S = F+U+G+Q, where
 - F= fixed part,
 - U= usage part,
 - G= congestion part,
 - Q= quality part

$$S = F + p_1 xT = F + p_1 q(T)$$

Traffic in the Internet

- Traffic shaping:
 - traffic = real-time + non real-time
 - delay increase => smaller peak rate
 - small delay in non real-time => big difference for the network!
 - Incentives for traffic shaping, priorities

- Real-time traffic
- Non real-time traffic

- With shifted non real-time
 - Required bandwidth for specific QoS Network Economics - 29

A bandwidth market

- One link, bandwidth = C, two classes of traffic
- Maximization problem:

$$\max_{\{x_{i}^{I}, x_{i}^{II}\}} \sum_{i} u_{i}(x_{i}^{I}, x_{i}^{II}) \quad s.t.$$

$$\sum_{i} x_{i}^{I} \leq \rho_{I}C_{I}, \sum_{i} x_{i}^{II} \leq \rho_{II}C_{II},$$

$$\rho_{I} < \rho_{II} < 1$$

• Solution: different prices for high and low priority traffic

A network model

System problem

$$\max_{\{x_r\}} \sum_{r} U_r(x_r)$$

s.t. $Ax \le C$, $x \ge 0$

NETWORK(A.C:x)

USERr(
$$U_r; \lambda_r$$
)

$$\max_{x_r \ge 0} U_r(x_r) - \lambda_r x_r \xrightarrow{\lambda_r} \lambda_r$$

$$j_j = sign(\sum_{r \in j} x_r - C_j)$$

$$\lambda_r = \sum_{j \in r} p_j$$

Network Economics - 31

A decomposition

$$\max_{\substack{\{x_r\}\ r}} \sum_{r} U_r(x_r) \qquad s$$

$$s.t. \quad Ax \le C, \quad x \ge 0$$

$$USERr(U_r;\lambda_r)$$

$$\max_{w_r \ge 0} U_r\left(\frac{w_r}{\lambda_r}\right) - w_r \qquad \stackrel{w_r}{\underset{\lambda_r}{\longrightarrow}} \xrightarrow{w_r}{\underset{\lambda_r}{\longrightarrow}} max U_r(x) - \lambda_r x \qquad \lambda_r = w_r / x_r$$

n

SYSTEM(U,A,C)

NETWORK(A,C;w)

$$\max_{\{x_r\}} \sum_{r} w_r \log x_r$$

s.t. $Ax \le C$

Proportional fairness

Primal algorithm

PRIMAL:

$$\frac{d}{dt}x_r(t) = k \left(w_r - x_r(t) \sum_{j \in r} \mu_j(t) \right)$$
$$\mu_j(t) = p_j \left(\sum_{s: j \in s} x_s(t) \right) \qquad p_j(x)$$

- P_j = marginal congestion cost at link *j*
- μ_j = rate of congestion signals generated at link *j*
 - = multiplicative decrease, linear increase = TCP!
- <u>demo</u>

• x(t)

Х

 C_i

Dual algorithm

DUAL:

$$\frac{d}{dt}\mu_{j}(t) = k \left(\sum_{r:j\in r} x_{r}(t) - q_{j}(\mu_{j}(t))\right) \begin{array}{c} q(\mu) \\ C_{j} \\ \\ x_{r}(t) \end{array} = \frac{w_{r}}{\sum_{k\in r} \mu_{k}(t)} \mu \end{array}$$

- $q_j(\mu_j)$ = flow through resource *j* that generates price μ_j
- $\mu_i(t)$ proportional to excess demand at these prices

Dimensioning of the network

• Prices at the equilibrium can play the role of "signals" for increase or decrease of the required network resources

If
$$V(C) = \max_{\{x_i\}} \sum_i u_i(x_i)$$
 s.t. $\sum_i x_i \le C$

with Lagrange multiplier λ ,

then $\frac{\partial V(C)}{\partial C} = \lambda$

So if the marginal cost of C increase is MC,

$$\lambda > MC \Longrightarrow$$
 increase of C
 $\lambda < MC \Longrightarrow$ decrease of C

Important: the value of λ equals with the equilibrium price in the market

Externalities

Externalities

- Externalities: the actions of one agent affect the utility of an other agent
- Positive (network effects), negative (congestion)
- No externality: $\pi_1 = \max_{x_1} u_1(x_1)$ $\pi_2 = \max_{x_2} u_2(x_2)$ • Externality: $\pi_1 = \max_{x_1} u_1(x_1) \pm g_1(x_2)$ $\pi_2 = \max_{x_2} u_2(x_2)$ $\pi_1 = \max_{x_1} u_2(x_2)$ $\pi_1 = \max_{x_2} u_2(x_2)$
- SW optimal prices can not be determined by the market alone: need special price mechanism that takes account of the externalities

Congestion prices

$$\sum_{x_{i}} \sum_{x_{i}} \sum_{D(\sum_{j} x_{j}) = \frac{1}{C - \sum_{j} x_{j}}} \text{User i: } u_{i}(x_{i}) - \gamma_{i} x_{i} D(\sum_{k} x_{k})$$

$$\text{Max SW} : \max_{x_{1}, \dots, x_{n}} \sum_{i} [u_{i}(x_{i}) - \gamma_{i} x_{i} D(\sum_{k} x_{k})]$$

$$\Leftrightarrow u_{i}' - \gamma_{i} D - \gamma_{i} x_{i} D' - D' \sum_{j \neq i} \gamma_{j} x_{j} = 0 \quad (1)$$
Free market equilib. : User i :
$$\max_{x_{i}} [u_{i}(x_{i}) - \gamma_{i} x_{i} D(\sum_{k} x_{k})]$$

$$\Leftrightarrow u_{i}' - \gamma_{i} D - \gamma_{i} x_{i} D' = 0 \quad (2) \quad \text{the system is more congested!}$$
To maximize SW : charge x_{i} with price $p_{i}^{c} = D' \sum_{j \neq i} \gamma_{j} x_{j}$
User i :
$$\max_{x_{i}} [u_{i}(x_{i}) - \gamma_{i} x_{i} D(\sum_{k} x_{k}) - p_{i}^{c} x_{i}]$$

$$\Leftrightarrow u_{i}' - \gamma_{i} D - \gamma_{i} x_{i} D' - p_{i}^{c} = 0 \quad (3)$$
Network Economics - 38

Externalities and demand

- Positive feedback: strong get stronger, weak get weaker
- Makes a market "tippy", "winner take all markets"
- Ethernet vs Token Ring, IP vs ATM, Wintel vs Apple
- Number of users is important: Metcalfe's Law: Value of network of size n proportional to n²

Sources of positive feedback

- Supply side economies of scale
 - Declining average cost
 - Marginal cost less than average cost
 - Example: information goods
- **Demand side** economies of scale
 - Network effects: virtual networks
 - Network externalities: one market participant affects others without compensation being paid.
 - Examples: telephony, fax, email, Web, Broadband Access, etc.

Network effects

$$i = 1, ..., N, u_i(n) = ni$$

assume $p \rightarrow n : N - n + 1, ... N$ consume
marginal customer $= N - n, \hat{u} = (N - n)n, \Rightarrow p = n(N - n)$

omics - 41

Public goods

- Non-excludable and non-rival goods
- Incentive problem in provisioning: the free-rider problem

Example: provision a common facility of size = 1,2

$$u_i(1) = 2, u_i(2) = 4, c_i(1) = 3$$

Free-riding: player i prefers the other player to contribute Free-market fails to provision optimum amount of public goods

- An other case where externalities (positive and negative) are important, public good aspects
- many equilibria, most of them inefficient

Example: two users share files

$$u_i(1) = 2, u_i(2) = 3, c_1(1) = 1.5, c_2(1) = 1.9$$
Player B
provision 1 provision 0
Player A
provision 0 1.5,1.1 .5,2
provision 0 2,.1 0,0

Free-riding: player i prefers the other player to contribute Two equilibria: one is more inefficient than the other

Economic modeling

- Basic model: public good provision, congestion
 - all peers benefit from the contribution of any single peer
 - but contribution is costly
 - positive externality creates an incentive to free-ride on efforts of others
 - consumption causes negative externalities
 - total effect: under-provision

Solutions ?

- One solution: government provision (e.g., national defense)
- For private provision: 2 problems
 - providing incentives to prevent free-riding
 - providing incentives to get information to prevent freeriding (mechanism design)

An economic model of peering

Net utility of peer *i*:
$$u_i(r, f) = b_i(r_i, \sum_{j=1}^N f_j) - c_i(f_i, \sum_{j=1}^N r_j)$$

Equilibrium strategy: each peer solves

$$\max_{r_i, f_i} b_i(r_i, \sum_{j=1}^N f_j) - c_i(f_i, \sum_{j=1}^N r_j) \quad \Longrightarrow \quad f_i \approx 0$$

 r_i : resource request rate of peer *i* f_i : amount of resources contributed by peer *i*

How do we achieve efficiency? (1)

- Provide incentives
 - different approaches depending on available information
- Case A: Complete information
 - traditional approach: use Lindahl prices
 - A Lindahl price represents total externality imposed by an individual peer
 - hence it is personalized
 - can achieve full efficiency with these prices
 - Prices may be replaced with simple linear rules

Maximizing efficiency

Global planner solves:

$$S = \max_{\{r_i\}, \{f_i\}} \sum_{i=1}^{N} \left[b_i(r_i, \sum_{j=1}^{N} f_j) - c_i(f_i, \sum_{j=1}^{N} r_j) \right] \longrightarrow \{r_i^*, f_i^*\}$$

Use prices: find
$$p_i^r$$
, p_i^f so that peer *i* chooses r_i^* , f_i^*
$$\max_{r_i, f_i} \left[b_i(r_i, f^*) - \frac{p_i^r}{p_i^r} r_i + \frac{p_i^f}{p_i^f} f_i - c_i(r^*, f_i) \right] \longrightarrow r_i^*, f_i^*$$

Use rules: find α_i, β_i so that peer *i* chooses

$$\max_{r_i, f_i} \left[b_i(r_i, f^*) - c_i(r^*, f_i) \right] \quad s.t. \quad r_i \le \beta_i f_i + a_i \implies r_i^*, f_i^*$$

 r_{i}^{*}, f_{i}^{*}

2 problems with Lindahl prices

- informationally very demanding (complete information)
- this can be relaxed in a large network: personalized prices can be approximated by a uniform price
- payments present difficulties in a large, anonymous network with many small transactions
- Use rules instead of prices

Interesting results

- For large N uniform prices, but not uniform rules
- Stability of rules
- Practical perspective
 - heuristics to approximate optimal prices and rules for mixed groups using information from single-type groups

Heuristics

The uniform price of the mixed group depending on N_A , N_B

Simple example: $b_i = v_1 \log r_i + v_2 \log \sum_j f_j - k_1 f_i - k_2 \left(\frac{f_i}{\sum_i f_j} r_j\right)^2$, 2 types (A and B) Network Economics - 51

How do we achieve efficiency? (2)

- Case B: incomplete information
 - model situation as a Bayesian game
 - peers know the distribution of the benefit and cost of other peers
- 2 types of inefficiency
- typically there are many equilibria, distinguished by who contributes
 - all equilibria are inefficient: free-riding is systematic
 - some equilibria are more inefficient than others: may have the 'wrong' peers contributing

The effect of heterogeneity

- Result: if peers are very different, 2nd inefficiency is not important: heterogeneity leads to a unique "good " equilibrium (peers that value the shared resource most contribute most)
 - study of Gnutella shows that bandwidth, latency, availability and degree of sharing vary across peers by 3--5 orders of magnitude

Avoiding free-riding

- Mechanism design
 - model explicitly peers' private information
 - give peers incentives to behave truthfully (incentive compatibility) ...
 - ... and to join network (participation)
 - ...and to contribute resources (cost coverage)
 - typically, full efficiency cannot be attained
- 2 problems with this approach
 - payments still necessary (to give informational incentives)
 - best mechanisms can be very complex and require large amounts of information to be collected centrally

Result: as the network becomes large

simple model for peer i

$$u_i(f_i, \sum_i f_j) = \theta_i u(\sum_i f_j) - c_i f_i$$

- best mechanism may become very simple: minimum contribution specified for each peer
- in certain circumstances, same contribution can be set for all peers
- in less restrictive cases, contributions have to be set for identifiable groups of peers

Information

- Economic agents that interact make decisions based on information available regarding the other agents
- Less information available leads to decrease of efficiency
- Adverse selection occurs when some type of agent finds it profitable to choose an offer intended for another type. As a result, the seller obtains less profit than anticipated
 - There may be no prices for firm to recover costs
 - \Rightarrow no equilibrium
 - Beneficial for both seller and buyers to signal information

Adverse selection and ISPs (1)

- *n* potential customers, each requiring *x* units of Internet use, *x* uniformly distributed on [0,1]
- A customer of type x has a utility u(x) = x ⇒ he won't buy service if his surplus x - w is negative
- The network exhibits economies of scale. The **unit cost** when using total bandwidth *b* for its customers is $p(b) \le 1$
 - p(b) includes a discount factor that varies linearly from α <1 to 1 with the total amount of bandwidth purchased

$$p(b) = a \frac{b}{n/2} + 1 \left(1 - \frac{b}{n/2}\right)$$

Adverse selection and ISPs (2)

- Complete information:
 - customer of type x is charged $w(x) = x \varepsilon$
- All customers subscribe, provider and customers have positive profits

$$p(n/2) = \alpha < 1$$

$$\pi(x) = x - \varepsilon - x\alpha = x(1 - \alpha) - \varepsilon > 0 \text{ for small enough } \varepsilon$$

Adverse selection and ISPs (3)

- **Incomplete information**: price is same for all customers
- Adverse selection: price targeted to recover costs for average customer, heavy customers profit and increase average cost => no stable market
- Assume that provider charges *w*
- n(1-w) heaviest customers subscribe, b = 1/2n(1-w)(1+w)
- Typical customer $\overline{x} = 1/2(1+w)$
- Profit from typical customer =

$$\overline{\pi} = w - \frac{1}{2} p(b)(1+w) = w - \frac{1}{2} [1 - (1-w^2)](1+w)$$

 $\overline{\pi} < 0$ if $\alpha > 0.7465$ for all values of w

Marginal cost pricing and cost recovery

Marginal cost prices

• Strong points:

- welfare maximisation under appropriate conditions
- firmly based on costs
- easy to understand
- Weak points:
 - do not cover total cost (need for subsidisation)
 - must be defined w.r.t. time frame of output expansion?
 - short run marginal cost = 0 or ∞
 - use long-run marginal cost (planned permanent expansion)
 - difficult to predict demand and to dimension the network
 - difficult to relate cost changes to marginal output changes

Network Economics - 61

Marginal cost pricing (cont.)

- Marginal cost = covers all sacrifices, present or future, external or internal to the company, for which production is at the margin causally responsible
- Problem1: specifying the time perspective
 - should we use long-run MC rather than short-run MC?
 - MC includes present and future causally attributed costs
 - problem: total cost coverage
- Problem2: specifying the incremental block of output
 - incremental cost depends on size of increment
 - charge the shortest run MC for the smallest output increment
- Problem3: large proportions of common costs

Recovering network cost

 Pricing at marginal cost maximises efficiency but does not necessarily recover network cost

• example: assume $c(x) = \alpha + \beta x$ Then under marginal cost pricing, $p = \beta$ and the network revenue is βx , hence we are short of α

• Ways out:

- add fixed fee (two-part tariffs)
- Ramsey prices
- general non-linear tariffs

Two-part tariffs

Under *MC* pricing, network needs to recover an additional amount *a* Use tariff a / N + bx

Customer benefit = u(x(b)) - a / N - bx(b) < 0? x(b) = user demand at price b

Network Economics - 64