In mammalian cells mitochondrial carriers
are involved in a number of disorders:

m diseases, like several myopathies

m Obesity

m programmed cell death (apoptosis)
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Distinct features of the “carrier pathway”
compared to “matrix targeting”:

1. Requirement for a chaperone function in the IMS

2. No ATP hydrolysis in the matrix is necessary

3. No translocation motor in the matrix Is required

4. The electrochemical membrane potential across the
IM is enough to complete insertion at the IM




Properties of the “small Tim proteins” - 1

m Seguence characteristics:
They are all homologous

They are intrinsically soluble (No transmembrane domains)

They have a putative “zinc-binding” motif, twin CX3C motif /xmﬁ\

Found in all eukaryotic cells
Human homologue of Tim8
Involved in Mohr-Tranebjaerg syndrome
m Organisation in assemblies:
Tim9/10 and Tim8/13 are found in 70 kDa complexes in the IMS

Tim12 is associated with the membrane-embedded TIM22 complex (IM)




Properties of the “small Tim proteins” - 2

m Function:

Tim9/10 (essential) function as chaperones in the IMS and facilitate
targeting to the IM

Tim12 (essential) facilitates insertion in the context of the TIM22
complex

Tim8/13 are non-essential but also seem to function as chaperones
In the IMS




The AAC substrate:
targeting signals??




Which are the sorting and insertion signals
of the carrier proteins?

A. Deletion Analysis

MATRIX

B. Site-directed mutagenesis
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AAC-DHFR CONSTRUCTS
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LOCALISATION
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IS THE TIM22 COMPLEX REQUIRED FOR
IMPORT?
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IS THE TIM10 COMPLEX REQUIRED FOR
IMPORT?
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IS THE TIM23 COMPLEX REQUIRED FOR

IMPORT?
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WORKING MODEL

Sufficient targeting information within each construct, BUT:

*No interaction with TIM10 complex

*Therefore no targeting to TIM22 W
*Translocation via TIM23 as a default pathway /
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Import Scheme for

—
AAC,
or mutants 35 S-precursor,
Rabbit reticulocyte lysate
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Proteinase K

Blue native gel analysis
= dimer formation

Sodium carbonate treatment
= integral membrane proteins




Stage Ill of AAC import
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Stage IV of AAC Import
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Stage V of AAC Import
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Cys mutants affecting AAC insertion in the IM
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Cys mutants affecting AAC insertion in the IM

CS63 | CS262( CS279[ CS3X | wtAAC1

* Functionally impaired Cys mutants have a significant
defect also in insertion and dimerisation of AAC1

» CS63 (first loop) and the triple Cys mutant are abrogated
In their efficiency to form a dimer in the membrane




Can we reconstitute in
vitro the TIM10 complex in
a functional form?




Reconstitution of the complex from
the individual subunits

1. Co-expression of Tim9 and Tim10 in E. coli on a single plasmid in an
operon

2. Expression and purification of the individual proteins separately

3. Purification of the authentic complex from yeast mitochondria

YES!

Tim9, Tim10 necessary and sufficient
for assembly of TIM10 complex

Reconstituted complex indistinguishable
from mitochondrial complex




Is the reconstituted complex
functional?

Functionality Assays:

1. Restoration of AAC import into TIM10-depleted mitochondria
2. Binding in vitro to AAC
3. Chaperone activity in vitro




Reconstitution in Tim9ts Mitochondria

AAC import into Tim9ts Mitochondria
IS restored after Import of Tim9 and/or Tim10
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The TIM10 complex chaperones luciferase
refolding
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What Is the structural
basis for the assembly of

the TIM10 complex?




CD Analysis of individual Tim9 and Tim10
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Thiol-trapping and accessibility by AMS and DTNB

\/ Tim10 .. Tim9

TCEP
AMS

DTNB assay GuHCI-DTT GUuHCI+DTT
Tim9 0 42+0.5
Tim10 0 3.6+0.3




Zinc binds to reduced Tim9 and reduced
Tim10, not the oxidised states
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Oxidised Tim9 and oxidised Tim10 form the complex
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ITC study of the interaction between Tim9
and Tim10
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CD analysis of the TIM10 complex
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DTT concentration dependence

'\\.\ TIM10 complex
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AMS and DTNB assay for TIM10 complex

Tim10 Tim9 TIM10

» &
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DTNB assay of the complex:
GUuHCI-DTT: 0
GUHCI+DTT: 8.2+0.5 per Tim9/10




The TIM10 complex Is more stable
against trypsin digestion than the individual proteins

Tim9 or Tim10 Complex
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Inter- vs. intra- molecular disulfides:
Misfolding & complex formation

Western Blotting
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Dynamics and size analysis by
multi-angle Light scattering

Individual proteins

w2

.ﬂh

o
w

TIM10 complex

100000

LS, AUX (volts)
o o
P N

——LSAUX = MolarMass

(jow/B) sseN Jejo

o
o

: . . 1000
11 12 13 14
Volume (ml)

100000

S
2 )
O -
> Z
% Q
5 a
< @
0 3
—! o

10 11 12
Volume (ml)

LS, AUX (volts)

(jow/B) sse JejoN

10 11 12
Volume (ml)




T10. T10 <—> T10 —m>

Intra-molecular S-S

non-covalent

productive
| | '

9. 79 €<—> T9 ——>




Compartment-specific
redox regulation of TIM10
assembly?




Prior Oxidation inhibits import

10% Oxidised Reduced Tim10
Control Timl0

Additional data:
1. NEM alkylation
2. Cys mutants
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Oxidative folding
locks the assembly
of the TIM10 complex

In the Intermembrane space
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Are there distinct
functional domains
in the small Tims?




3D structure?




SAXS Analysis
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