In mammalian cells mitochondrial carriers are involved in a number of disorders:

diseases, like several myopathies

obesity

programmed cell death (apoptosis)

Distinct features of the "carrier pathway" compared to "matrix targeting":

1. Requirement for a chaperone function in the IMS

2. No ATP hydrolysis in the matrix is necessary

3. No translocation motor in the matrix is required

4. The electrochemical membrane potential across the IM is enough to complete insertion at the IM

Properties of the "small Tim proteins" - 1

Sequence characteristics:

- They are all homologous
- They are intrinsically soluble (No transmembrane domains)
- They have a putative "zinc-binding" motif, twin CX3C motif
- Found in all eukaryotic cells
- Human homologue of Tim8

involved in Mohr-Tranebjaerg syndrome

- Organisation in assemblies:
 - Tim9/10 and Tim8/13 are found in 70 kDa complexes in the IMS
 - Tim12 is associated with the membrane-embedded TIM22 complex (IM)

COOH

Properties of the "small Tim proteins" - 2

Function:

- Tim9/10 (<u>essential</u>) function as chaperones in the IMS and facilitate targeting to the IM
- Tim12 (<u>essential</u>) facilitates insertion in the context of the TIM22 complex
- Tim8/13 are <u>non-essential</u> but also seem to function as chaperones in the IMS

The AAC substrate: targeting signals?? Which are the sorting and insertion signals of the carrier proteins?

A. Deletion Analysis

B. Site-directed mutagenesis

AAC-DHFR CONSTRUCTS

LOCALISATION

IS THE TIM22 COMPLEX REQUIRED FOR IMPORT?

IS THE TIM10 COMPLEX REQUIRED FOR IMPORT?

• No TIM10 complex

10% M MP 1TM 1loop 2TM

IS THE TIM23 COMPLEX REQUIRED FOR IMPORT?

WORKING MODEL

Sufficient targeting information within each construct, BUT:

- •No interaction with TIM10 complex
- •Therefore no targeting to TIM22
- •Translocation via TIM23 as a default pathway

Stage III of AAC import

TIM 22 COMPLEX

Stage IV of AAC Import

17

Stage V of AAC Import

• = Cysteine residue

Cys mutants affecting AAC insertion in the IM

20

Cys mutants affecting AAC insertion in the IM

 Functionally impaired Cys mutants have a significant defect also in insertion and dimerisation of AAC1

 CS63 (first loop) and the triple Cys mutant are abrogated in their efficiency to form a dimer in the membrane Can we reconstitute *in vitro* the TIM10 complex in a functional form?

Reconstitution of the complex from the individual subunits

- 1. Co-expression of Tim9 and Tim10 in *E. coli* on a single plasmid in an operon
- 2. Expression and purification of the individual proteins separately
- 3. Purification of the authentic complex from yeast mitochondria

YES!

Tim9, Tim10 necessary and sufficient for assembly of TIM10 complex

Reconstituted complex indistinguishable from mitochondrial complex

Is the reconstituted complex functional?

Functionality Assays:

- 1. Restoration of AAC import into TIM10-depleted mitochondria
- 2. Binding in vitro to AAC
- 3. Chaperone activity in vitro

Reconstitution in Tim9ts Mitochondria

AAC import into Tim9ts Mitochondria is restored after Import of Tim9 and/or Tim10

The TIM10 complex chaperones luciferase refolding

What is the structural basis for the assembly of the TIM10 complex?

CD Analysis of individual Tim9 and Tim10

28

Thiol-trapping and accessibility by AMS and DTNB

Zinc binds to reduced Tim9 and reduced Tim10, not the oxidised states

Oxidised Tim9 and oxidised Tim10 form the complex

ITC study of the interaction between Tim9 and Tim10

32

CD analysis of the **TIM10** complex

DTT concentration dependence

AMS and DTNB assay for TIM10 complex

DTNB assay of the complex: GuHCl-DTT: 0 GuHCl+DTT: 8.2±0.5 per Tim9/10

The TIM10 complex is more stable against trypsin digestion than the individual proteins

Inter- vs. *intra-* molecular disulfides: Misfolding & complex formation

800 600 400 200 7 8 9 10 11 12 13 14 15 16 17 Volume (ml)

Western Blotting

Dynamics and size analysis by multi-angle Light scattering

$T10.T10 \iff T10 \longrightarrow T10 - T10$

*intra-*molecular S-S non-covalent productive *inter-*molecular S-S covalent abortive

T9.T9 \leftrightarrow T9 \longrightarrow T9 \longrightarrow T9-T9

Compartment-specific redox regulation of TIM10 assembly?

Prior Oxidation inhibits import

Additional data: 1. NEM alkylation 2. Cys mutants

Oxidative folding locks the assembly of the TIM10 complex in the intermembrane space

Cytosol

Mitochondrion

Are there distinct functional domains in the small Tims?

3D structure?

SAXS Analysis

47

Acknowledgments Collaborators

University of Manchester

Present: Stephanie Agius

Felicity Alcock

Scott Allen

Hui Lu

Maïlys Vergnolle

Past: Sabrina Dyall (UCLA, USA)

Pierre Luciano (CNRS, Marseilles France)

i dhìt

THE UNIVERSIT ∞/ MANCHESTE

Peter Savory (Scotland Diagnostics)

Sarah Vial (Vertex Pharmaceuticals, Oxford UK)

IMBB-FORTH Catherine Baud

- <u>Daresbury Laboratory</u>
 Günter Grossmann
- <u>UMIST</u>
 Alexander Golovanov, Lu-Yun Lian

Funding

The Lister Institute, The Welcome Trust, MRC, BBSRC, EU, The Leverhulme Trust, The Royal Society