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In mammalian cells mitochondrial carriers 
are involved in a number of disorders:

In mammalian cells mitochondrial carriers 
are involved in a number of disorders:

diseases, like several diseases, like several myopathiesmyopathies

obesityobesity

programmed cell death (apoptosis)programmed cell death (apoptosis)
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Distinct features of the “carrier pathway” 
compared to “matrix targeting”:

Distinct features of the “carrier pathway” 
compared to “matrix targeting”:

1. Requirement for a chaperone function in the IMS1. Requirement for a chaperone function in the IMS

2. No ATP hydrolysis in the matrix is necessary2. No ATP hydrolysis in the matrix is necessary

3. No translocation motor in the matrix is required3. No translocation motor in the matrix is required

4. The electrochemical membrane potential across the 4. The electrochemical membrane potential across the 
IM is enough to complete insertion at the IMIM is enough to complete insertion at the IM
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Properties of the “small Tim proteins” - 1Properties of the “small Tim proteins” - 1

Sequence characteristics:Sequence characteristics:

They are all homologousThey are all homologous

They are intrinsically soluble (No They are intrinsically soluble (No transmembranetransmembrane domains)domains)

They have a putative “zincThey have a putative “zinc--binding” motif, twin CX3C motifbinding” motif, twin CX3C motif

Found in all eukaryotic cellsFound in all eukaryotic cells

Human homologue of Tim8Human homologue of Tim8

involved in Mohrinvolved in Mohr--TranebjaergTranebjaerg syndromesyndrome

Organisation in assemblies:Organisation in assemblies:

Tim9/10 and Tim8/13 are found in 70 Tim9/10 and Tim8/13 are found in 70 kDakDa complexes in the IMScomplexes in the IMS

Tim12 is associated with  the membraneTim12 is associated with  the membrane--embedded TIM22 complex (IM)embedded TIM22 complex (IM)

C
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C

X15/16

C
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C

Zn2+
H2N COOH
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Properties of the “small Tim proteins” - 2Properties of the “small Tim proteins” - 2

Function:Function:
Tim9/10 (Tim9/10 (essentialessential) function as chaperones in the IMS and facilitate ) function as chaperones in the IMS and facilitate 
targeting to the IMtargeting to the IM

Tim12 (Tim12 (essentialessential) facilitates insertion in the context of the TIM22 ) facilitates insertion in the context of the TIM22 
complexcomplex

Tim8/13 are Tim8/13 are nonnon--essentialessential but also seem to function as chaperones but also seem to function as chaperones 
in the IMSin the IMS
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The AAC substrate: 
targeting signals??
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Which are the sorting and insertion signals 
of the carrier proteins?   

Which are the sorting and insertion signals 
of the carrier proteins?   
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Radiolabelled protein 
synthesised in a rabbit 

reticulocyte lysate.
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LOCALISATION
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Import into tim12-ts
mitochondria

• No Tim12 
• No Tim22
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Import into Mitoplasts

• No TIM10 complex
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Import into mitoplasts +

peptide competition

-Hsp60= presequence peptide

- Synb2= charged peptide
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Sufficient targeting information within each construct, BUT:

•No interaction with TIM10 complex 

•Therefore no targeting to TIM22 

•Translocation via TIM23 as a default pathway 

WORKING MODEL
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Import Scheme for AAC

Blue native gel analysis
= dimer formation

Sodium carbonate treatment
= integral membrane proteins

Import
25o C, ∆Ψ +

35 S-precursor,
Rabbit reticulocyte lysate

Isolated
MitochondriaAAC,

or mutants

+

Mitoplasting +
Proteinase K
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Stage III of AAC import
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Stage IV of AAC Import
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Stage V of AAC Import
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Inner Membrane
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space

Matrix

N
C

REPEAT 1 REPEAT 2 REPEAT 3

TM
1

TM
3

TM
4

TM
5

TM
6

TM
2

63

279

262

= Cysteine residue



20

Cys mutants affecting AAC insertion in the IM   Cys mutants affecting AAC insertion in the IM   
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Cys mutants affecting AAC insertion in the IM   Cys mutants affecting AAC insertion in the IM   

• Functionally impaired Cys mutants have a significant
defect also in insertion and dimerisation of AAC1

• CS63 (first loop) and the triple Cys mutant are abrogated 
in their efficiency to form a dimer in the membrane

CS63 CS262 CS279 CS3X wtAAC1
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Can we reconstitute in 
vitro the TIM10 complex in 

a functional form?

Can we reconstitute in 
vitro the TIM10 complex in 

a functional form?
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1. Co-expression of Tim9 and Tim10 in E. coli on a single plasmid in an 
operon

2. Expression and purification of the individual proteins separately 

3. Purification of the authentic complex from yeast mitochondria

Tim9, Tim10 necessary and sufficient 
for assembly of TIM10 complex

Reconstituted complex indistinguishable 
from mitochondrial complex 

YES!

Reconstitution of the complex from 
the individual subunits

Reconstitution of the complex from 
the individual subunits
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Is the reconstituted complex 
functional?

Is the reconstituted complex 
functional?

Functionality Assays:

1. Restoration of AAC import into TIM10-depleted mitochondria
2. Binding in vitro to AAC
3. Chaperone activity in vitro 
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WT Tim9ts Tim9ts Tim9tsTim9ts Tim10ts

+Tim9 +Tim9
+Tim10

+Tim10
+Tim9

+Tim9

T P S T P S T P S T P S T P S T P S

Reconstitution in Tim9ts Mitochondria

AAC import into Tim9ts Mitochondria
is restored after Import of Tim9 and/or Tim10
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What is the structural 
basis for the assembly of 

the TIM10 complex? 

What is the structural 
basis for the assembly of 

the TIM10 complex? 
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14

7
TCEP           - - +             - - +
AMS            - +            +             - +             +

M                Tim10                        Tim9          

GuHCl-DTT     GuHCl+DTT
Tim9 0 4.2 ± 0.5
Tim10 0 3.6 ± 0.3

DTNB assay

Thiol-trapping and accessibility by AMS and DTNB
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Oxidised Tim9 and oxidised Tim10 form the complex 
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ITC study of the interaction between Tim9 
and Tim10
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CD analysis of the TIM10 complex 
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DTT concentration dependence
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AMS and DTNB assay for TIM10 complex 

TCEP            - - +         - - +         - - + 
AMS            - +     +         - +     +         - +      +  

Tim10 Tim9 TIM10

DTNB assay of the complex:
GuHCl-DTT: 0
GuHCl+DTT: 8.2±0.5 per Tim9/10
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The TIM10 complex is more stable 
against trypsin digestion than the individual proteins

αTim9

αTim10

Tim9 or Tim10 Complex

Time /min    0      5       10     20     30     60         0   5      10     20    30     60
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Dynamics and size analysis by 
multi-angle Light scattering
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T10 . T10 T10 T10 –T10

intra-molecular S-S
non-covalent
productive

inter-molecular S-S
covalent
abortive

T9 . T9 T9 T9 –T9
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Compartment-specific 
redox regulation of TIM10

assembly?
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Prior Oxidation inhibits import
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Additional data:
1. NEM alkylation
2.       Cys mutants
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Oxidative folding 
locks the assembly 

of the TIM10 complex 
in the intermembrane space
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Are there distinct 
functional domains
in the small Tims?
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3D structure?
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Tim9-Tim10
complex
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Tim10
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