

On Humanoid Control

Hiro Hirukawa Humanoid Robotics Group Intelligent Systems Institute AIST, Japan

Humanoids can move the environment for humans

Implies that

- ⇒ Walking on a flat floor and rough terrain
- Going up and down stairs and ladders
- Lying down, crawling and getting up
- Falling down safely and getting up
- Opening and closing doors

Humanoids move on two, three or four feet.

Humanoid as a Controlled Plant

A humanoid robot is a multilink structure that is not fixed to the environment and moves in the environment and/or moves the environment by the contact force between the robot and the environment in the gravity field.

Humanoid Control Problem

When the initial and final configurations of a humanoid robot is given, find motions of the robot that can transfer it from the initial configuration to the final configuration through a sequence of the contact states.

Control Algorithms

Inverted Pendulum Scheme

- 1. Plan motions of the robot
- 2. Change the position of the next footprint to keep the planned configuration of the robot
- ZMP (Zero Moment Point) based Scheme
- 1. Plan a sequence of footprints.
- 2. Change the configuration of the robot to keep the planned sequence of the footprints

Motions vs. Contact Force

$$M(\mathbf{g} - \ddot{\mathbf{p}}_G) = \mathbf{f}_C$$
$$\mathbf{p}_G \times M(\mathbf{g} - \ddot{\mathbf{p}}_G) - \dot{\mathbf{L}} = \mathbf{\tau}_C$$

- \mathbf{p}_G : Position of the center of the gravity
- L: Angular momentum about the COG
- \mathbf{f}_C : Contact force
- $\boldsymbol{\tau}_{C}$: Contact torque

DG

Inverted Pendulum Scheme

[Gubina, Hemami and McGee 1974]

Footprints may have a constraint

ZMP based Scheme

[Vukobratovic and Stepanenko 1972]

What is ZMP (Zero Moment Point)?

•ZMP **NEVER** leaves the support polygon! •ZMP can be measured by force sensors in feet.

Hiro Hirukawa

The Onassis Foundation Lecture Series 2006

10/88

How ZMP is used?

- When the ZMP is inside the support polygon, the contact between the feet and the floor should be kept.
- When the contact is kept, the posture of the robot should be kept without falling down.

From the ZMP to the COG

Motions vs. Contact Force

$$M(\mathbf{g} - \ddot{\mathbf{p}}_G) = \mathbf{f}_C$$
$$\mathbf{p}_G \times M(\mathbf{g} - \ddot{\mathbf{p}}_G) - \dot{\mathbf{L}} = \mathbf{\tau}_C$$

- \mathbf{p}_G : Position of the center of the gravity
- L: Angular momentum about the COG
- \mathbf{f}_C : Contact force
- $\boldsymbol{\tau}_{C}$: Contact torque

Fc, T C

DG

Cart-Table Model

- A running cart on a mass-less table
- The table has a small support area

The ZMP of the Cart-Table Model

Input and Output

Walking pattern generation

Find the cart trajectory to realize the given ZMP pattern

Hiro Hirukawa

Servo tracking control of the ZMP

Proper dynamics of Cart-Table model

From ZMP reference to Cart motion

The cart must move before ZMP changes ! Servo controller must use FUTURE information

Hiro Hirukawa

The Preview Control

On a winding road, we steer a car by watching ahead, **by previewing the future reference**.

- Concept and naming [Sheridan 1966]
 - LQ optimal controller [Tomizuka and Rosenthal 1979] [Katayama et.al 1985]

The Onassis Foundation Lecture Series 2006

Walking Pattern Generator

[Kajita et al.]

Hiro Hirukawa

Experiment of HRP-2

Configuration of the Feedback Controller

Feedback Controller is essential

Without stabilizer

With stabilizer

PAIST

Feedback Control of the Table Orientation

PAIST

Feedback Control of the Cart Position

[Nagasaka, Inaba and Inoue, 1999]

ZMP equation with sensor delay T

$$x_0 = \frac{1}{1+sT} \left(x - \frac{z_h}{g} \ddot{x} \right)$$

System representation

$$\frac{d}{dt} \begin{bmatrix} x_0 \\ x \\ \dot{x} \end{bmatrix} = \begin{bmatrix} -1/T & 1/T & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_0 \\ x \\ x \end{bmatrix} + \begin{bmatrix} -z_c / (gT) \\ 0 \\ 1 \end{bmatrix} \ddot{x}$$

Stabilization by state feedback

Used in the walking controller of H7. Good for robots with hard feet.

ZMP error

Cart position modification

Hiro Hirukawa

Experiment on a Slope

PAIST

HRP-2 walks on a Rough Terrain

$Gap < \pm 20 \text{ mm}$ Slope < 5%

Hiro Hirukawa

Japanese Traditional Dance

[Nakaoka et al. 2005]

Hiro Hirukawa

The First Running Humanoid Sony Qrio [Dec.,2003]

Qrio runs at 0.84 km/h.

Running Biped [AIST Apr.,2004]

Speed 0.58km/hour

Slow motions

Hiro Hirukawa

Walking on a floor with low friction

μ: 0.5 0.1 μ: 0.5 0.05

$\mu = 0.15$ between a tire of a car and a wet snow surface

Hiro Hirukawa

PAIST

Reduction of the Slip by a Tuning of Walking Pattern

Rotation about Yaw-axis may occur at µ = 0.3 due to the change of the acceleration when the supporting leg is exchanged.
The pattern generator is tuned to reduce the peak of the jerk.

Walk on a Floor with a Low Friction

Humanoids can move the environment for humans

Implies that

- ⇒ Walking on a flat floor and rough terrain
- Going up and down stairs and ladders
- Lying down, crawling and getting up
- Falling down safely and getting up
- Opening and closing doors

Humanoids move on two, three or four feet.

Contact States Graph

Balance Control for the Transition

The position of the torso link is under a compliance control.

Dynamic Simulation

Lying down and Getting up

Humanoids can move the environment for humans

Implies that

- ⇒ Walking on a flat floor and rough terrain
- Going up and down stairs and ladders
- Lying down, crawling and getting up
- ⇒ Falling down safely and getting up
- Opening and closing doors

Humanoids move on two, three or four feet.

Preliminary Experiment for Falling

With the knee extended

With the knee bended

Hiro Hirukawa

Falling Motion of a Leg Robot

Impact Test

Falling Motion of Humanoid Robot

Humanoids can move the environment for humans

Implies that

- ⇒ Walking on a flat floor and rough terrain
- Going up and down stairs and ladders
- Lying down, crawling and getting up
- Falling down safely and getting up
- Opening and closing doors
- Arms and legs coordination

Humanoids move on two, three or four feet.

Several Configurations of Arm/Leg Coordination

Hiro Hirukawa

2D Convex Hull

3D Convex Hull

Hiro Hirukawa

Hiro Hirukawa

Small Acceleration

Hiro Hirukawa

Large Acceleration

Hiro Hirukawa

Projection of the ZMP

Numerical Example

Area of the Generalized ZMP

Hiro Hirukawa

Push a heavy object

25.9 kg

[Harada et al. 2004]

Hiro Hirukawa

Pushing a button with the support of a hand

[Harada et al. 2004]

Hiro Hirukawa

An Open Question

Can we plan motions of humanoid robots based on the unified criterion?

- What the ZMP criterion can judge?
 - The ZMP can judge if the contact should be kept without solving the equations of motions when the robot moves on a flat plane under the sufficient friction assumption.

Our Goal are

to create a new criterion that can judge the contact stability of humanoids which may touch an arbitrary terrain with two, three or four feet, and

to prove that the criterion is equivalent to ZMP in a specific case and more universal, and to claim to say "Adios ZMP".

Related Works

Legged Robots

- ⇒ ZMP [Vukobratovic 1972]
- Locomotion with hand contact [Yoneda 1996]
- ⇒ FRI [Goswani 1999]
- ⇒ FSW [Saida 2003]
- ⇒ Generalized ZMP [Harada 2004]

Mechanical Assembly Strong and Weak Stability [Trinkle 1997]

Formulation

Gravity and Inertia Wrench

$$\mathbf{f}_{G} = M(\mathbf{g} - \ddot{\mathbf{p}}_{G})$$
$$\mathbf{\tau}_{G} = \mathbf{p}_{G} \times M(\mathbf{g} - \ddot{\mathbf{p}}_{G}) - \dot{\mathcal{L}}$$

 \mathbf{p}_G : Center of the mass

 \mathcal{L} : Angular momentum around COG

Contact Wrench

$$\mathbf{f}_{C} = \sum_{k=1}^{K} \sum_{l=1}^{L} \varepsilon_{k}^{l} (\mathbf{n}_{k} + \mu_{k} \mathbf{t}_{k}^{l})$$
$$\mathbf{\tau}_{C} = \sum_{k=1}^{K} \sum_{l=1}^{L} \varepsilon_{k}^{l} \mathbf{p}_{k} \times (\mathbf{n}_{k} + \mu_{k} \mathbf{t}_{k}^{l})$$

Polyhedral Convex Cone

60/88

Strong Stability Criterion

- The contact state must be stable if (-f_G,- _G) is an internal element of the contact wrench cone under the sufficient friction assumption.
 (proof)
- The work done by (fg, G) is negative for any motion; $\forall (\delta x_G, \Omega_G) \neq 0, (-f_{G_1} - \tau_G) \in int(CWC); (\delta x_G, \Omega_G) \square (f_{G_1} \tau_G) < 0,$ where the CWC is given by

$$\mathbf{f}_{C} = \sum_{k=1}^{K} \sum_{l=1}^{L} (\varepsilon_{k}^{l} \mathbf{n}_{k} + \varepsilon_{k}^{l} \mathbf{t}_{k}^{l}) \qquad \mathbf{\tau}_{C} = \sum_{k=1}^{K} \sum_{l=1}^{L} (\varepsilon_{k}^{l} \mathbf{p}_{k} \times \mathbf{n}_{k} + \varepsilon_{k}^{l} \mathbf{p}_{k} \times \mathbf{t}_{k}^{l})$$

PAIST

Example 1. Walking on a horizontal plane with sufficient friction

$$M\ddot{x}_{G} = \sum_{k=1}^{K} (\varepsilon_{k}^{1} - \varepsilon_{k}^{2})$$
Horizontal for
should balance
the friction free
the assumption

$$M\ddot{y}_{G} = \sum_{k=1}^{K} (\varepsilon_{k}^{3} - \varepsilon_{k}^{4})$$
Horizontal for
should balance
the friction free
the assumption

$$M(\ddot{z}_{G} + g) = \sum_{k=1}^{K} \varepsilon_{k}^{0}$$

$$M(\ddot{z}_{G} + g) = \sum_{k=1}^{K} \varepsilon_{k}^{0}$$
Strong stability he
if the moment alco
the horizontal axe
is inside the CWC

$$Mx_{G}\ddot{y}_{G} - My_{G}\ddot{x}_{G} + \dot{\mathcal{L}}_{z} = \sum_{k=1}^{K} \varepsilon_{k}^{0}x_{k}$$
is inside the CWC

$$Mx_{G}\ddot{y}_{G} - My_{G}\ddot{x}_{G} + \dot{\mathcal{L}}_{z} = \sum_{k=1}^{K} \{(\varepsilon_{k}^{3} - \varepsilon_{k}^{4})x_{k} - (\varepsilon_{k}^{1} - \varepsilon_{k}^{2})y_{k}\}$$

Horizontal force should balance the friction from the assumption

trong stability holds the moment along ne horizontal axes inside the CWC.

PAIST

Strong Stability Determination by ZMP

$$\frac{M(\ddot{z}_G + g)x_G - M\ddot{x}_G z_G - \dot{\mathcal{L}}_y}{M(\ddot{z}_G + g)} = \sum_{k=1}^K \lambda_k x_k$$
$$\frac{M(\ddot{z}_G + g)y_G - M\ddot{y}_G z_G + \dot{\mathcal{L}}_x}{M(\ddot{z}_G + g)} = \sum_{k=1}^K \lambda_k y_k$$
$$\sum_{k=1}^K \lambda_k = 1, \lambda_k \ge 0$$

Equivalence between the ZMP and the CWC

ZMP

$$\frac{M(\ddot{z}_G + g)x_G - M\ddot{x}_G z_G - \dot{\mathcal{L}}_y}{M(\ddot{z}_G + g)} = \sum_{k=1}^K \lambda_k x_k$$
$$\frac{M(\ddot{z}_G + g)y_G - M\ddot{y}_G z_G + \dot{\mathcal{L}}_x}{M(\ddot{z}_G + g)} = \sum_{k=1}^K \lambda_k y_k$$
$$\sum_{k=1}^K \lambda_k = 1, \lambda_k \ge 0$$

CWC

$$M(\ddot{z}_{G}+g)y_{G} - M\ddot{y}_{G}z_{G} + \dot{\mathcal{L}}_{x} = \sum_{k=1}^{K} \varepsilon_{k}^{0}y_{k}$$
$$-M(\ddot{z}_{G}+g)x_{G} + M\ddot{x}_{G}z_{G} + \dot{\mathcal{L}}_{y} = -\sum_{k=1}^{K} \varepsilon_{k}^{0}x_{k}$$
Dividing the equations by $M(\ddot{z}_{G}+g) = \sum_{k=1}^{K} \varepsilon_{k}^{0}$

Hiro Hirukawa

Equivalence between the ZMP and the CWC

ZMP

$$\frac{M(\ddot{z}_G + g)x_G - M\ddot{x}_G z_G - \dot{\mathcal{L}}_y}{M(\ddot{z}_G + g)} = \sum_{k=1}^K \lambda_k x_k$$
$$\frac{M(\ddot{z}_G + g)y_G - M\ddot{y}_G z_G + \dot{\mathcal{L}}_x}{M(\ddot{z}_G + g)} = \sum_{k=1}^K \lambda_k y_k$$
$$\sum_{k=1}^K \lambda_k = 1, \lambda_k \ge 0$$

CWC

$$\frac{M(\ddot{z}_G + g)y_G - M\ddot{y}_G z_G + \dot{\mathcal{L}}_x}{M(\ddot{z}_G + g)} = \sum_{k=1}^{K} \frac{\varepsilon_k^0}{\varepsilon} y_k$$
$$\frac{-M(\ddot{z}_G + g)x_G + M\ddot{x}_G z_G + \dot{\mathcal{L}}_y}{M(\ddot{z}_G + g)} = -\sum_{k=1}^{K} \frac{\varepsilon_k^0}{\varepsilon} x_k$$

 $\sum_{k=1}^{\frac{\varepsilon_k}{\varepsilon}} = 1, \frac{\varepsilon_k}{\varepsilon} \ge 0$

Hiro Hirukawa

The CWC for a 2D-Robot on a Line

PAIST

A Desired Trajectory in the CWC

The CWC is the direct product of a 2D polyhedral cone and 1D linear subspace, which is identical for the single and double support phases.

Hiro Hirukawa

Example 2. Robot on a Stair (1/2)

$$M(\ddot{z}_G + g)y_G - M\ddot{y}_G z_G + \dot{L}_x$$
$$= \sum_{k=1}^{K} \varepsilon_k^0 y_k - \lambda_1^y z_{F1} - \lambda_2^y z_{F2}$$

$$-M(\ddot{z}_G + g)x_G + M\ddot{x}_G z_G + \dot{L}_y$$
$$= -\sum_{k=1}^{K} \varepsilon_k^0 x_k + \lambda_1^x z_{F1} + \lambda_2^x z_{F2}$$

Example 2. Robot on a Stair (2/2) $M(\ddot{z}_{c}+g)y_{c}-M\ddot{y}_{c}z_{c}+\dot{L}_{x}$

where

 $M\ddot{y}_G = \lambda_1^y + \lambda_2^y$

Hiro Hirukawa

The Onassis Foundation Lecture Series 2006

69/88

PAIST

Pattern Generation of the COG

$$\frac{d}{dt} \begin{pmatrix} y_G \\ \dot{y}_G \\ \ddot{y}_G \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} y_G \\ \dot{y}_G \\ \ddot{y}_G \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} u_y$$
$$\xi_{tx} = \begin{pmatrix} -Mg & 0 & M(z_G - z_F) \end{pmatrix} \begin{pmatrix} y_G \\ \dot{y}_G \\ \dot{y}_G \\ \ddot{y}_G \end{pmatrix}$$
$$u_y = \ddot{y}_G$$

 $\xi_{tx} = \tau_y^{ref} - \dot{L}_y^{ref}$

The CWC for a 2D-Robot on a Stair

PAIST

A Desired Trajectory in the CWC

The CWC is the direct product of a 2D polyhedral cone and 1D linear subspace, which is **not identical** for the single support phases of the lower and the higher feet, and is the product of the 2D cone and 2D linear subspace for a double support phase.

Hiro Hirukawa

The Onassis Foundation Lecture Series 2006

72/88

Vertical Trajectory of the ZMP

Pseudo Plane on which the ZMP trajectory is defined [Honda]

Equivalent trajectory of the ZMP based on the proposed criterion

Horizontal Contact Force while Climbing Stairs

Black curve is generated from a continuous trajectory in the CWC Red curve is generated from a discontinuous one in the CWC

Hiro Hirukawa

ZMP vs.CWC

	ZMP	CWC
Flat plane Foot contact Sufficient friction	Strong Stability	Strong Stability
Arbitrary terrain Hand/Foot contact Sufficient friction	N/A	Strong Stability

Summary of the CWC

The proposed criterion is equivalent to ZMP in the specific case and can judge the strong stability in generic cases.

Therefore we claim to say "Adios ZMP", and the voice can be louder when we can plan motions in a variety of cases based on the proposed criterion.

Open Problems in the Control

Robust walking

Biped walking is still not robust enough for a large disturbance.

Walking on a natural rough terrain

- Walking must be more generalized with the recognition of the working environment.
- Falling motion control

The human-size humanoid just crashes when it falls down without a proper control.

Humanoids in Real Environment

Research Platforms

HOAP (Fujitsu)

60cm, 50K Euro

HRP-2m Choromet (General Robotix) 35cm, 5K Euro

Hiro Hirukawa

Free Research Platform

OpenHRP: Open Architecture Humanoid Robotics Platform http://www.aist.go.jp/is/humanoid/openhrp/

Hiro Hirukawa

Implementation Features of OpenHRP

Distributed Object System based on CORBA

- Concurrent development using an arbitrary operating system and language
 - OpenHRP is written in Java, C++ and runs on Linux and Windows

CORBA Objects of OpenHRP

ISE : Integrated Simulation Environment

Our Current Challenge

- A Famous Project of Takeo Kanade
 EyeVision at the Superball
 - ⇒ Let's watch NBA in the court.

Our Challenge

- ⇒ Let's go to the cafeteria with a humanoid.
 - Robust biped walking
 - Going up and down stairs
 - Opening and closing doors
 - 3D SLAM

Powered Suits

HAL [U of Tsukuba]

Bleex [UC Berkeley]

Hiro Hirukawa

Autonomous Walking-Aid

A Measure of the Ability of a Robot

Artificial Intelligence

This robot has the intelligence that is compatible to three years old child.

Mobility of a Humanoid

This robot has the mobility that is compatible to eighty years old person.

May, my dog on a summer vacation

Hiro Hirukawa

