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Standard Model: Vanilla ΛCDM
• 6 parameter ΛCDM model 
• Fits WMAP and most other cosmological data

Parameter 3 Year Mean 5 Year Mean 5 Year Max Like
100Ωbh2 2.229 ± 0.073 2.273 ± 0.062 2.27

Ωch2 0.1054 ± 0.0078 0.1099 ± 0.0062 0.108
ΩΛ 0.759 ± 0.034 0.742 ± 0.030 0.751
ns 0.958 ± 0.016 0.963+ 0 .014

−0.015 0.961
τ 0.089 ± 0.030 0.087 ± 0.017 0.089

∆ 2
R (2.35 ± 0.13) × 10−9 (2.41 ± 0.11) × 10−9 2.41 ×10−9

σ8 0.761 ± 0.049 0.796 ± 0.036 0.787
Ωm 0.241 ± 0.034 0.258 ± 0.030 0.249

Ωm h2 0.128 ± 0.008 0.1326 ± 0.0063 0.131
H 0 73.2+ 3 .1

−3.2 71.9+ 2 .6
−2.7 72.4

zreion 11.0 ± 2.6 11.0 ± 1.4 11.2
t0 13.73 ± 0.16 13.69 ± 0.13 13.7



Milestones: Past & Present
• Large-scale anisotropy    COBE DMR   '92   
• Degree-scale anisotropy   many      '93-'99
• First acoustic peak     Toco, Boom, Maxima '99-'00
• Secondary acoustic peak(s)  DASI, Boom   '01
• Damping tail       CBI      '02
• Acoustic polarization    DASI      '02
• Secondary anisotropy?    CBI      '02
• Reionization       WMAP     '03
• ISW correlation      WMAP+LSS   '03
• Large scale anomalies?   WMAP (COBE)  '03
• Tilt (or finite slow roll param) WMAP(+ext, LSS) '06
• Lensing correlation     WMAP+LSS   '07
• Primordial non-Gaussianity?  WMAP     '07
• Lensing smoothing     ACBAR     '08



Milestones: Future
• Sunyaev-Zel’dovich cluster & secondaries surveys
• Polarization tests of large-scale temperature anomalies
• Lensing B-modes     
• Lensing mass reconstruction 
• Reionization history & inhomogeneity
• Gravitational wave B-modes  



In the Beginning...

Hu & White (2004); artist:B. Christie/SciAm;  available at http://background.uchicago.edu



Anisotropy Formation
• Temperature inhomogeneities at recombination become anisotropy




Seeing Spots
• 1 part in 100000 variations in temperature

• Spot sizes ranging from a fraction of a degree to 180 degrees

• Selecting only spots of a given range of sizes gives a power
spectrum or frequency spectrum of the variations much like a
graphic equalizer for sound.

64º




Seeing Spots




Theorist's Time-Ordered Data




Power Spectrum Present
Dunkley et al (2008)



Power Spectrum Present



Power Spectrum Future
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Angular Peaks
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Seeing Sound
• Colliding electrons, protons and photons forms a plasma

• Acts as gas just like molecules in the air

• Compressional disturbance propagates in the gas through particle
collisions

• Unlike sound in the air, we see the sound in the CMB

• Compression heats the gas resulting in a hot spot in the CMB




Thomson Scattering
• Thomson scattering of photons off of free electrons is the most

important CMB process with a cross section (averaged over
polarization states) of

σT =
8πα2

3m2
e

= 6.65× 10−25cm2

• Density of free electrons in a fully ionized xe = 1 universe

ne = (1− Yp/2)xenb ≈ 10−5Ωbh
2(1 + z)3cm−3 ,

where Yp ≈ 0.24 is the Helium mass fraction, creates a high
(comoving) Thomson opacity

τ̇ ≡ neσTa

where dots are conformal time η ≡
∫
dt/a derivatives and τ is the

optical depth.



Tight Coupling Approximation
• Near recombination z ≈ 103 and Ωbh

2 ≈ 0.02, the (comoving)
mean free path of a photon

λC ≡
1

τ̇
∼ 2.5Mpc

small by cosmological standards!

• On scales λ� λC photons are tightly coupled to the electrons by
Thomson scattering which in turn are tightly coupled to the
baryons by Coulomb interactions

• Specifically, their bulk velocities are defined by a single fluid
velocity vγ = vb and the photons carry no anisotropy in the rest
frame of the baryons

• → No heat conduction or viscosity (anisotropic stress) in fluid



Zeroth Order Approximation
• Momentum density of a fluid is (ρ+ p)v, where p is the pressure

• Neglect the momentum density of the baryons

R ≡ (ρb + pb)vb
(ργ + pγ)vγ

=
ρb + pb
ργ + pγ

=
3ρb
4ργ

≈ 0.6

(
Ωbh

2

0.02

)( a

10−3

)
since ργ ∝ T 4 is fixed by the CMB temperature T = 2.73(1 + z)K
– OK substantially before recombination

• Neglect radiation in the expansion

ρm
ρr

= 3.6

(
Ωmh

2

0.15

)( a

10−3

)



Number Continuity
• Photons are not created or destroyed. Without expansion

ṅγ +∇ · (nγvγ) = 0

but the expansion or Hubble flow causes nγ ∝ a−3 or

ṅγ + 3nγ
ȧ

a
+∇ · (nγvγ) = 0

• Linearize δnγ = nγ − n̄γ

(δnγ)
· = −3δnγ

ȧ

a
− nγ∇ · vγ(

δnγ
nγ

)·
= −∇ · vγ



Continuity Equation
• Number density nγ ∝ T 3 so define temperature fluctuation Θ

δnγ
nγ

= 3
δT

T
≡ 3Θ

• Real space continuity equation

Θ̇ = −1

3
∇ · vγ

• Fourier space

Θ̇ = −1

3
ik · vγ



Momentum Conservation
• No expansion: q̇ = F

• De Broglie wavelength stretches with the expansion

q̇ +
ȧ

a
q = F

for photons this the redshift, for non-relativistic particles
expansion drag on peculiar velocities

• Collection of particles: momentum→ momentum density
(ργ + pγ)vγ and force→ pressure gradient

[(ργ + pγ)vγ]
· = −4

ȧ

a
(ργ + pγ)vγ −∇pγ

4

3
ργv̇γ =

1

3
∇ργ

v̇γ = −∇Θ



Euler Equation
• Fourier space

v̇γ = −ikΘ

• Pressure gradients (any gradient of a scalar field) generates a
curl-free flow

• For convenience define velocity amplitude:

vγ ≡ −ivγk̂

• Euler Equation:

v̇γ = kΘ

• Continuity Equation:

Θ̇ = −1

3
kvγ



Oscillator: Take One
• Combine these to form the simple harmonic oscillator equation

Θ̈ + c2
sk

2Θ = 0

where the adiabatic sound speed is defined through

c2
s ≡

ṗγ
ρ̇γ

here c2
s = 1/3 since we are photon-dominated

• General solution:

Θ(η) = Θ(0) cos(ks) +
Θ̇(0)

kcs
sin(ks)

where the sound horizon is defined as s ≡
∫
csdη



Seeing Sound
• Oscillations frozen at recombination

• Compression=hot spots, Rarefaction=cold spots




Harmonic Extrema
• All modes are frozen in at recombination (denoted with a subscript
∗) yielding temperature perturbations of different amplitude for
different modes. For the adiabatic (curvature mode) Θ̇(0) = 0

Θ(η∗) = Θ(0) cos(ks∗)

• Modes caught in the extrema of their oscillation will have
enhanced fluctuations

kns∗ = nπ

yielding a fundamental scale or frequency, related to the inverse
sound horizon

kA = π/s∗

and a harmonic relationship to the other extrema as 1 : 2 : 3...



The First Peak



Extrema=Peaks
• First peak = mode that just compresses

• Second peak = mode that compresses then
 rarefies: twice the wavenumber
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Extrema=Peaks
• First peak = mode that just compresses

• Second peak = mode that compresses then
 rarefies: twice the wavenumber

• Harmonic peaks: 1:2:3 in wavenumber
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Peak Location
• The fundmental physical scale is translated into a fundamental

angular scale by simple projection according to the angular
diameter distance DA

θA = λA/DA

`A = kADA

• In a flat universe, the distance is simply DA = D ≡ η0 − η∗ ≈ η0,
the horizon distance, and kA = π/s∗ =

√
3π/η∗ so

θA ≈
η∗
η0

• In a matter-dominated universe η ∝ a1/2 so θA ≈ 1/30 ≈ 2◦ or

`A ≈ 200



Spatial Curvature
•	Physical scale of peak = distance sound travels

•	Angular scale measured: comoving angular
	 diameter distance test for curvature

Flat

Closed



Curvature
• In a curved universe, the apparent or angular diameter distance is

no longer the conformal distance DA = R sin(D/R) 6= D

• Objects in a closed universe are further than they appear!
gravitational lensing of the background...

• Curvature scale of the universe must be substantially larger than
current horizon

• Flat universe indicates critical density and implies missing energy
given local measures of the matter density “dark energy”

• D also depends on dark energy density ΩDE and equation of state
w = pDE/ρDE.

• Expansion rate at recombination or matter-radiation ratio enters
into calculation of kA.



Curvature in the Power Spectrum
•	Features scale with angular diameter distance

•	Angular location of the first peak




First Peak Precisely Measured
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Dark Energy
• Peaks measure distance to recombination
• ISW effect constrains dynamics of acceleration

ΩDE
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Dark Energy
• Flat ΛCDM fully consistent with CMB and other distance measures
• Constant w=p/ρ constrained as -0.097<1+w<0.142 (95% CL)

Komatsu et al (2008)



Doppler Peaks?
• Doppler effect for the photon dominated system is of equal

amplitude and π/2 out of phase: extrema of temperature are
turning points of velocity

• Effects add in quadrature:(
∆T

T

)2

= Θ2(0)[cos2(ks) + sin2(ks)] = Θ2(0)

• No peaks in k spectrum! However the Doppler effect carries an
angular dependence that changes its projection on the sky
n̂ · vγ ∝ n̂ · k̂
• Coordinates where ẑ ‖ k̂

Y10Y`0 → Y`±1 0

recoupling j′`Y`0: no peaks in Doppler effect



Doppler Effect
• Bulk motion of fluid changes the observed temperature via

Doppler shifts (
∆T

T

)
dop

= n̂ · vγ

• Averaged over directions(
∆T

T

)
rms

=
vγ√

3

• Acoustic solution

vγ√
3

= −
√

3

k
Θ̇ =

√
3

k
kcs Θ(0)sin(ks)

= Θ(0)sin(ks)



Doppler Effect
• Relative velocity of fluid and observer 
• Extrema of oscillations are turning points or velocity zero points
• Velocity π/2 out of phase with temperature

Velocity minima

Velocity maxima



Doppler Effect
• Relative velocity of fluid and observer 
• Extrema of oscillations are turning points or velocity zero points
• Velocity π/2 out of phase with temperature
• Zero point not shifted by baryon drag
• Increased baryon inertia decreases effect

meff V2 = const.   V ∝  meff
–1/2 = (1+R)–1/2

V||

V||

η

∆T
/T

η
∆T

/T

−|Ψ|/3

−|Ψ|/3Velocity minima

Velocity maxima

No baryons

Baryons



Doppler Peaks?
• Doppler effect has lower amplitude and weak features from projection

observer
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Hu & Sugiyama (1995)



Relative Contributions
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Restoring Gravity: Continuity
• Take a simple photon dominated system with gravity

• Continuity altered since a gravitational potential represents a
stretching of the spatial fabric that dilutes number densities –
formally a spatial curvature perturbation

• Think of this as a perturbation to the scale factor a→ a(1 + Φ) so
that the cosmogical redshift is generalized to

ȧ

a
→ ȧ

a
+ Φ̇

(δnγ)
· = −3δnγ

ȧ

a
− 3nγΦ̇− nγ∇ · vγ

so that the continuity equation becomes

Θ̇ = −1

3
kvγ − Φ̇



Metric Stretch

• Potential wells curve or stretch space 

• Like the expansion of the universe, changes in the potential
change the wavelength of photons



Metric Stretch

• Potential wells curve or stretch space 

• Like the expansion of the universe, changes in the potential
change the wavelength of photons



Restoring Gravity: Euler
• Gravitational force in momentum conservation F = −m∇Ψ

generalized to momentum density modifies the Euler equation to

v̇γ = k(Θ + Ψ)

• General relativity says that Φ and Ψ are the relativistic analogues
of the Newtonian potential and that Φ ≈ −Ψ.

• In our matter-dominated approximation, Φ represents matter
density fluctuations through the cosmological Poisson equation

k2Φ = 4πGa2ρm∆m

where the difference comes from the use of comoving coordinates
for k (a2 factor), the removal of the background density into the
background expansion (ρm∆m) and finally a coordinate subtlety
that enters into the definition of ∆m



Constant Potentials
• In the matter dominated epoch potentials are constant because

infall generates velocities as vm ∼ kηΨ

• Velocity divergence generates density perturbations as
∆m ∼ −kηvm ∼ −(kη)2Ψ

• And density perturbations generate potential fluctuations as
Φ ∼ ∆m/(kη)2 ∼ −Ψ, keeping them constant. Note that because
of the expansion, density perturbations must grow to keep
potentials constant.

• Here we have used the Friedman equation H2 = 8πGρm/3 and
η =

∫
d ln a/(aH) ∼ 1/(aH)

• More generally, if stress perturbations are negligible compared
with density perturbations ( δp� δρ ) then potential will remain
roughly constant – more specifically a variant called the Bardeen
or comoving curvature ζ is constant



Oscillator: Take Two
• Combine these to form the simple harmonic oscillator equation

Θ̈ + c2
sk

2Θ = −k
2

3
Ψ− Φ̈

• In a CDM dominated expansion Φ̇ = Ψ̇ = 0. Also for photon
domination c2

s = 1/3 so the oscillator equation becomes

Θ̈ + Ψ̈ + c2
sk

2(Θ + Ψ) = 0

• Solution is just an offset version of the original

[Θ + Ψ](η) = [Θ + Ψ](0) cos(ks)

• Θ + Ψ is also the observed temperature fluctuation since photons
lose energy climbing out of gravitational potentials at
recombination



Gravitational Ringing
• Potential wells = inflationary seeds of structure

• Fluid falls into wells, pressure resists: acoustic
 oscillations




Effective Temperature
• Photons climb out of potential wells at last scattering

• Lose energy to gravitational redshifts

• Observed or effective temperature

Θ + Ψ

• Effective temperature oscillates around zero with amplitude given
by the initial conditions

• Note: initial conditions are set when the perturbation is outside of
horizon, need inflation or other modification to matter-radiation
FRW universe.

• GR says that initial temperature is given by initial potential



Inflation and the Initial Conditions
• Inflation: (nearly) scale-invariant curvature (potential) perturbations

• Superluminal expansion → superhorizon scales → "initial conditions"

• Accompanying temperture perturbations due to cosmological redshift

• Potential perturbation Ψ = time-time metric perturbation
δt/t = Ψ → δT/T = –δa/a = –2/3δt/t = –2/3Ψ

T
im

e

Space

Comoving

cold

hot

Newtonian

Sachs & Wolfe (1967); White & Hu (1997)




Sachs-Wolfe Effect and the Magic 1/3
• A gravitational potential is a perturbation to the temporal

coordinate [formally a gauge transformation]

δt

t
= Ψ

• Convert this to a perturbation in the scale factor,

t =

∫
da

aH
∝
∫

da

aρ1/2
∝ a3(1+w)/2

where w ≡ p/ρ so that during matter domination

δa

a
=

2

3

δt

t

• CMB temperature is cooling as T ∝ a−1 so

Θ + Ψ ≡ δT

T
+ Ψ = −δa

a
+ Ψ =

1

3
Ψ



Sachs-Wolfe Effect and the Magic 1/3
• A gravitational potential is a perturbation to the temporal

coordinate [formally a gauge transformation]

δt

t
= Ψ

• Convert this to a perturbation in the scale factor,

t =

∫
da

aH
∝
∫

da

aρ1/2
∝ a3(1+w)/2

where w ≡ p/ρ so that during matter domination

δa

a
=

2

3

δt

t

• CMB temperature is cooling as T ∝ a−1 so

Θ + Ψ ≡ δT

T
+ Ψ = −δa

a
+ Ψ =

1

3
Ψ



Smooth Energy Density & Potential Decay

• A smooth component contributes
density ρ to the expansion

but not
density fluctuation δρ to the Poisson equation

• Imbalance causes potential to decay once smooth 
component dominates the expansion



ISW Effect

• Gravitational blueshift on infall does not cancel redshift 
on climbing out

• Contraction of spatial metric doubles the effect: ∆T/T=2∆Φ

• Effect from potential hills and wells cancel on small scales



ISW Effect

• Gravitational blueshift on infall does not cancel redshift 
on climbing out

• Contraction of spatial metric doubles the effect: ∆T/T=2∆Φ

• Effect from potential hills and wells cancel on small scales



ISW Effect
• ISW effect hidden in the temperature power spectrum by primary
 anisotropy and cosmic variance

[plot: Hu & Scranton (2004)]
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• Effective temperature initially Θ+Ψ=Ψ/3 and
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 temperature after gravitational redshift
    



The Second Peak



Baryon Loading
• Baryons add extra mass to the photon-baryon fluid

• Controlling parameter is the momentum density ratio:

R ≡ pb + ρb
pγ + ργ

≈ 30Ωbh
2
( a

10−3

)
of order unity at recombination

• Momentum density of the joint system is conserved

(ργ + pγ)vγ + (ρb + pb)vb ≈ (pγ + pγ + ρb + ργ)vγ

= (1 +R)(ργ + pγ)vγb

where the controlling parameter is the momentum density ratio:

R ≡ pb + ρb
pγ + ργ

≈ 30Ωbh
2
( a

10−3

)
of order unity at recombination



Second Peak First Measured
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New Euler Equation
• Momentum density ratio enters as

[(1 +R)(ργ + pγ)vγb]
· = −4

ȧ

a
(1 +R)(ργ + pγ)vγb

−∇pγ − (1 +R)(ργ + pγ)∇Ψ

same as before except for (1 +R) terms so

[(1 +R)vγb]
· = kΘ + (1 +R)kΨ

• Photon continuity remains the same

Θ̇ = −k
3
vγb − Φ̇

• Modification of oscillator equation

[(1 +R)Θ̇]· +
1

3
k2Θ = −1

3
k2(1 +R)Ψ− [(1 +R)Φ̇]·



Baryon & Inertia
• Baryons add inertia to 
 the fluid

• Equivalent to adding mass 
 on a spring

• Same initial conditions

• Same null in fluctuations

• Unequal amplitudes of
 extrema




Oscillator: Take Three
• Combine these to form the not-quite-so simple harmonic oscillator

equation

c2
s

d

dη
(c−2
s Θ̇) + c2

sk
2Θ = −k

2

3
Ψ− c2

s

d

dη
(c−2
s Φ̇)

where c2
s ≡ ṗγb/ρ̇γb

c2
s =

1

3

1

1 +R

• In a CDM dominated expansion Φ̇ = Ψ̇ = 0 and the adiabatic
approximation Ṙ/R� ω = kcs

[Θ + (1 +R)Ψ](η) = [Θ + (1 +R)Ψ](0) cos(ks)



Baryon Peak Phenomenology
• Photon-baryon ratio enters in three ways

• Overall larger amplitude:

[Θ + (1 +R)Ψ](0) =
1

3
(1 + 3R)Ψ(0)

• Even-odd peak modulation of effective temperature

[Θ + Ψ]peaks = [±(1 + 3R)− 3R]
1

3
Ψ(0)

[Θ + Ψ]1 − [Θ + Ψ]2 = [−6R]
1

3
Ψ(0)

• Shifting of the sound horizon down or `A up

`A ∝
√

1 +R

• Actual effects smaller since R evolves
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Low Baryons

–

A Baryon-meter
• Low baryons: symmetric compressions and
 rarefactions
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Baryon Loading

–

A Baryon-meter
• Load the fluid adding to gravitational force

• Enhance compressional peaks (odd) over
 rarefaction peaks (even)
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A Baryon-meter

• Enhance compressional peaks (odd) over
 rarefaction peaks (even)
    e.g. relative suppression of second peak



Photon Baryon Ratio Evolution
• Oscillator equation has time evolving mass

c2
s

d

dη
(c−2
s Θ̇) + c2

sk
2Θ = 0

• Effective mass is is meff = 3c−2
s = (1 +R)

• Adiabatic invariant

E

ω
=

1

2
meffωA

2 =
1

2
3c−2
s kcsA

2 ∝ A2(1 +R)1/2 = const.

• Amplitude of oscillation A ∝ (1 +R)−1/4 decays adiabatically as
the photon-baryon ratio changes



Baryons in the Power Spectrum
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 Higher Peaks



Radiation and Dark Matter
• Radiation domination: 
    potential wells created by CMB itself

• Pressure support ⇒ potential decay ⇒ driving

• Heights measures when dark matter dominates




Driving Effects and Matter/Radiation
• Potential perturbation: k2Ψ = –4πGa2δρ generated by radiation
• Radiation →  Potential: inside sound horizon δρ/ρ pressure supported

δρ hence Ψ decays with expansion

Θ+Ψ

−Ψ

η
∆T

/T

Hu & Sugiyama (1995)



Driving Effects and Matter/Radiation
• Potential perturbation: k2Ψ = –4πGa2δρ generated by radiation
• Radiation →  Potential: inside sound horizon δρ/ρ pressure supported

δρ hence Ψ decays with expansion
• Potential →  Radiation: Ψ–decay timed to drive oscillation

–2Ψ + (1/3)Ψ = –(5/3)Ψ  → 5x boost
• Feedback stops at matter domination
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η
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Hu & Sugiyama (1995)



Driving Effects and Matter/Radiation
• Potential perturbation: k2Ψ = –4πGa2δρ generated by radiation
• Radiation →  Potential: inside sound horizon δρ/ρ pressure supported

δρ hence Ψ decays with expansion
• Potential →  Radiation: Ψ–decay timed to drive oscillation

–2Ψ + (1/3)Ψ = –(5/3)Ψ  → 5x boost
• Feedback stops at matter domination

Θ+Ψ

−Ψ

η
∆T

/T

Hu & Sugiyama (1995)



Oscillator: Take Three and a Half
• The not-quite-so simple harmonic oscillator equation is a forced

harmonic oscillator

c2
s

d

dη
(c−2
s Θ̇) + c2

sk
2Θ = −k

2

3
Ψ− c2

s

d

dη
(c−2
s Φ)

changes in the gravitational potentials alter the form of the
acoustic oscillations

• If the forcing term has a temporal structure that is related to the
frequency of the oscillation, this becomes a driven harmonic
oscillator

• Term involving Ψ is the ordinary gravitational force

• Term involving Φ involves the Φ̇ term in the continuity equation as
a (curvature) perturbation to the scale factor



Potential Decay
• Matter-to-radiation ratio

ρm
ρr
≈ 24Ωmh

2
( a

10−3

)
of order unity at recombination in a low Ωm universe

• Radiation is not stress free and so impedes the growth of structure

k2Φ = 4πGa2ρr∆r

∆r ∼ 4Θ oscillates around a constant value, ρr ∝ a−4 so the
Netwonian curvature decays.

• General rule: potential decays if the dominant energy component
has substantial stress fluctuations, i.e. below the generalized sound
horizon or Jeans scale



Radiation Driving
• Decay is timed precisely to drive the oscillator - close to fully

coherent

[Θ + Ψ](η) = [Θ + Ψ](0) + ∆Ψ−∆Φ

=
1

3
Ψ(0)− 2Ψ(0) =

5

3
Ψ(0)

• 5× the amplitude of the Sachs-Wolfe effect!

• Coherent approximation is exact for a photon-baryon fluid but
reality is reduced to ∼ 4× because of neutrino contribution to
radiation

• Actual initial conditions are Θ + Ψ = Ψ/2 for radiation
domination but comparison to matter dominated SW correct



External Potential Approach
• Solution to homogeneous equation

(1 +R)−1/4cos(ks) , (1 +R)−1/4sin(ks)

• Give the general solution for an external potential by propagating
impulsive forces

(1 +R)1/4Θ(η) = Θ(0)cos(ks) +

√
3

k

[
Θ̇(0) +

1

4
Ṙ(0)Θ(0)

]
sin ks

+

√
3

k

∫ η

0

dη′(1 +R′)3/4sin[ks− ks′]F (η′)

where

F = −Φ̈− Ṙ

1 +R
Φ̇− k2

3
Ψ

• Useful if general form of potential evolution is known



Dark Matter in the Power Spectrum
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Damping Tail



Dissipation / Diffusion Damping
• Imperfections in the coupled fluid → mean free path λC in the baryons
• Random walk over diffusion scale: geometric mean of mfp & horizon

 λD ~ λC√N ~ √λCη >> λC

• Overtake wavelength:  λD ~ λ ; second order in λC/λ 

• Viscous damping for R<1;  heat conduction damping for R>1

N=η / λC

λD ~ λC√N

λ

Po
w

er

0.1

1.0

500 1000 1500
l

perfect fluid

instant decoupling

Silk (1968); Hu & Sugiyama (1995); Hu & White (1996)



Dissipation / Diffusion Damping
• Rapid increase at recombination as mfp ↑

• Independent of (robust to changes in) perturbation spectrum

• Robust physical scale for angular diameter distance test (ΩK, ΩΛ)

Po
w

er

0.1

1.0

500 1000 1500
l

perfect fluid

instant decoupling

recombination

Silk (1968); Hu & Sugiyama (1995); Hu & White (1996)

Recombination



Damping
• Tight coupling equations assume a perfect fluid: no viscosity, no

heat conduction

• Fluid imperfections are related to the mean free path of the
photons in the baryons

λC = τ̇−1 where τ̇ = neσTa

is the conformal opacity to Thomson scattering

• Dissipation is related to the diffusion length: random walk
approximation

λD =
√
NλC =

√
η/λC λC =

√
ηλC

the geometric mean between the horizon and mean free path

• λD/η∗ ∼ few %, so expect the peaks :> 3 to be affected by
dissipation



Equations of Motion
• Continuity

Θ̇ = −k
3
vγ − Φ̇ , δ̇b = −kvb − 3Φ̇

where the photon equation remains unchanged and the baryons
follow number conservation with ρb = mbnb

• Euler

v̇γ = k(Θ + Ψ)− k

6
πγ − τ̇(vγ − vb)

v̇b = − ȧ
a
vb + kΨ + τ̇(vγ − vb)/R

where the photons gain an anisotropic stress term πγ from radiation
viscosity and a momentum exchange term with the baryons and
are compensated by the opposite term in the baryon Euler equation



Viscosity
• Viscosity is generated from radiation streaming from hot to cold

regions

• Expect

πγ ∼ vγ
k

τ̇

generated by streaming, suppressed by scattering in a wavelength
of the fluctuation. Radiative transfer says

πγ ≈ 2Avvγ
k

τ̇

where Av = 16/15

v̇γ = k(Θ + Ψ)− k

3
Av
k

τ̇
vγ



Viscosity & Heat Conduction
• Both fluid imperfections are related to the gradient of the velocity

kvγ by opacity τ̇ : slippage of fluids vγ − vb.

• Viscosity is an anisotropic stress or quadrupole moment formed by
radiation streaming from hot to cold regions

m=0

v

hot

hot

cold

v



Damping & Viscosity

• Quadrupole moments:

   damp acoustic oscillations from fluid viscosity
   generates polarization from scattering (next lecture)

• Rise in polarization power coincides with fall in
 temperature power – l ~ 1000     

105 15 20

Ψ

Θ+Ψ

πγ

ks/π

damping

driving

polarization



Oscillator: Penultimate Take
• Adiabatic approximation ( ω � ȧ/a)

Θ̇ ≈ −k
3
vγ

• Oscillator equation contains a Θ̇ damping term

c2
s

d

dη
(c−2
s Θ̇) +

k2c2
s

τ̇
AvΘ̇ + k2c2

sΘ = −k
2

3
Ψ− c2

s

d

dη
(c−2
s Φ̇)

• Heat conduction term similar in that it is proportional to vγ and is
suppressed by scattering k/τ̇ . Expansion of Euler equations to
leading order in k/τ̇ gives

Ah =
R2

1 +R

since the effects are only significant if the baryons are dynamically
important



Oscillator: Final Take
• Final oscillator equation

c2
s

d

dη
(c−2
s Θ̇) +

k2c2
s

τ̇
[Av + Ah]Θ̇ + k2c2

sΘ = −k
2

3
Ψ− c2

s

d

dη
(c−2
s Φ̇)

• Solve in the adiabatic approximation

Θ ∝ exp(i

∫
ωdη)

−ω2 +
k2c2

s

τ̇
(Av + Ah)iω + k2c2

s = 0



Dispersion Relation
• Solve

ω2 = k2c2
s

[
1 + i

ω

τ̇
(Av + Ah)

]
ω = ±kcs

[
1 +

i

2

ω

τ̇
(Av + Ah)

]
= ±kcs

[
1± i

2

kcs
τ̇

(Av + Ah)

]
• Exponentiate

exp(i

∫
ωdη) = e±iks exp[−k2

∫
dη

1

2

c2
s

τ̇
(Av + Ah)]

= e±iks exp[−(k/kD)2]

• Damping is exponential under the scale kD



Diffusion Scale
• Diffusion wavenumber

k−2
D =

∫
dη

1

τ̇

1

6(1 +R)

(
16

15
+

R2

(1 +R)

)
• Limiting forms

lim
R→0

k−2
D =

1

6

16

15

∫
dη

1

τ̇

lim
R→∞

k−2
D =

1

6

∫
dη

1

τ̇

• Geometric mean between horizon and mean free path as expected
from a random walk

λD =
2π

kD
∼ 2π√

6
(ητ̇−1)1/2
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Power Spectrum Present



Standard Ruler
• Damping length is a fixed physical scale given properties at

recombination

• Gemoetric mean of mean free path and horizon: depends on
baryon-photon ratio and matter-radiation ratio




Standard Rulers
• Calibrating the Standard Rulers

• Sound Horizon

• Damping Scale

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Baryons
Matter/Radiation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Baryons
Matter/Radiation
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CBI

Consistency Check on Recombinaton



COBE

FIRS
Ten

SP MAX

IAB

OVROATCA
IAC

Pyth

BAM

Viper

WD BIMA

MSAM

ARGO SuZIE

RING

QMAP

TOCO

Sask

BOOM

CAT

BOOM

Maxima

10 100 1000

20

40

60

80

100

l

∆T
 (

µK
)

W. Hu 11/00

The Peaks

1st
flat universe

3rd
dark matter

2nd
baryonic dark

matter

checks



Lecture I: Summary
• CMB photons emerge from the cosmic photosphere at z ∼ 103

when the universe (re)combines

• Temperature inhomogeneity at recombination becomes anisotropy
to the observer at present

• Initial temperature inhomogeneities oscillate as sound waves in the
plasma

• Harmonic series of peaks based on the distance sound travels by
recombination

• Distance can be calibrated if expansion history is known and
baryon content known

• Angular scale measures the angular diameter distance to
recombination involving the curvature and to a lesser extent the
dark energy



Lecture I: Summary
• Gravitational potential redshift combines with gravitationally

induced initial perturbation to form the Sachs-Wolfe effect

• Baryon loading enhances odd numbered peaks so that the ratio of
first to second peak height determines the baryon density

• Decay of potentials during radiation domination drives oscillations
so that the relative peak heights across the first three peaks
determines the matter-radiation ratio

• Fluid imperfections due to viscosity (quadrupole stresses) and heat
conduction dissipate acoustic waves in a manner predicted by
baryon density and matter-radiation ratio

• Strong consistency checks for recombination physics, angular
diameter distance and source of acoustic polarization
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