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Standard Model: Vanilla ACDM

6 parameter ACDM model
Fits WMAP and most other cosmological data

Parameter 3 Year Mean 5 Year Mean 5 Year Max Like
100Q,h? 2.229 +0.073 2.273 +£0.062 2.27
Q.h? 0.1054 + 0.0078 0.1099 4+ 0.0062 0.108
QA 0.759 + 0.034 0.742 £+ 0.030 0.751
ng 0.958 +0.016 0.963*0 014 0.961
T 0.089 £+ 0.030 0.087 £0.017 0.089
A%z (235+0.13) x 10° (2.414+0.11) x 10~° 241 x107°
Og 0.761 £0.049 0.796 £+ 0.036 0.787
Qn 0.241 +0.034 0.258 +£0.030 0.249
Q. h? 0.128 +0.008 0.1326 +£0.0063 0.131
Ho 73.2%3 ) 71.9%59 724
Zreion 11.0£+2.6 11.0+14 11.2

to 13.73 £ 0.16 13.69 £0.13 13.7




Milestones: Past & Present

Large-scale anisotropy COBE DMR 92
Degree-scale anisotropy many '93-'99
First acoustic peak Toco, Boom, Maxima '99-'00
Secondary acoustic peak(s) DASI, Boom 01
Damping tail CBI '02
Acoustic polarization DASI '02
Secondary anisotropy? CBI '02
Reionization WMAP '03
ISW correlation WMAP+LSS '03
Large scale anomalies? WMAP (COBE) '03
Tilt (or finite slow roll param) WMAP(+ext, LSS) '06
Lensing correlation WMAP+LSS i
Primordial non-Gaussianity?  WMAP i

Lensing smoothing ACBAR '08



Milestones: Future

Sunyaev-Zel’ dovich cluster & secondaries surveys
Polarization tests of large-scale temperature anomalies
_ensing B-modes

|_ensing mass reconstruction

Reionization history & inhomogeneity
Gravitational wave B-modes



In the Beginning...

Hu & White (2004); artist:B. Christie/SciAm; available at http://background.uchicago.edu







Seeing Spots
| part in 100000 variations in temperature

Spot sizes ranging from a fraction of a degree to 180 degrees

Selecting only spots of a given range of sizes gives a power
spectrum or frequency spectrum of the variations much like a
graphic equalizer for sound.




Seelng Spots
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Power Spectrum Future
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Angular Peaks
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Seeing Sound

Colliding electrons, protons and photons forms a plasma
Acts as gas just like molecules in the air

Compressional disturbance propagates in the gas through particle
collisions

Blueshift

Unlike sound 1n the air, we see the sound in the CMB

Compression heats the gas resulting in a hot spot in the CMB




Thomson Scattering

Thomson scattering of photons off of free electrons is the most
important CMB process with a cross section (averaged over
polarization states) of

2
oma” 6.65 x 10~%°cm?

Dar =
3Im?2

Density of free electrons in a fully ionized . = 1 universe
ne = (1 —Y,/2)zeny = 107°Qph%(1 + 2)°cm ™2

where Y, ~ 0.24 1s the Helium mass fraction, creates a high
(comoving) Thomson opacity

T = N.OTa

where dots are conformal time 7 = [ dt/a derivatives and 7 is the
optical depth.



Tight Coupling Approximation
Near recombination z ~ 10°% and Q,h? ~ 0.02, the (comoving)
mean free path of a photon

1
Ao = — ~ 2.5Mpc
7

small by cosmological standards!

On scales A > Az photons are tightly coupled to the electrons by
Thomson scattering which in turn are tightly coupled to the
baryons by Coulomb interactions

Specifically, their bulk velocities are defined by a single fluid
velocity v, = v, and the photons carry no anisotropy in the rest
frame of the baryons

— No heat conduction or viscosity (anisotropic stress) in fluid



Zeroth Order Approximation

Momentum density of a fluid is (p + p)v, where p is the pressure

Neglect the momentum density of the baryons

(Po +Pe)vs _ pot+po _ 3ps
(py +Py)vy  py by 4py

0 2
~ 0.6 bh ( : )
0.02 103
since p., o< T* is fixed by the CMB temperature 7' = 2.73(1 + 2)K
— OK substantially before recombination

R

Neglect radiation in the expansion

2
P _ 36 (Sl ( d )
Oy 0.15 103




Number Continuity

Photons are not created or destroyed. Without expansion

n,+V-(n,v,) =0

3

but the expansion or Hubble flow causes n, o< a™” or

a
My + 377@5 + V.- (n,vy) =0

[inearize 5n,7 — ey —

(0ny) = —35nvg —n,V v,

(5&) Vv
Tly



Continuity Equation

Number density n, o< T° so define temperature fluctuation ©

O ol
— —37 = 30

Ty

Real space continuity equation

: 1

@ — —gv . ny
Fourier space

: 1

O =—-tk-v,



Momentum Conservation
No expansion: q = F

De Broglie wavelength stretches with the expansion
. a
q+-q=F
a

for photons this the redshift, for non-relativistic particles
expansion drag on peculiar velocities

Collection of particles: momentum — momentum density
(py + py)Vv, and force — pressure gradient

, a
(py +py)Vy| = _45(:07 +Dy)Vy — VD,
4 1
3PV = gvﬂv

v, = —VO



Euler Equation
Fourier space
v, = —1kO

Pressure gradients (any gradient of a scalar field) generates a
curl-free flow

For convenience define velocity amplitude:

v, = —wyk
Euler Equation:
v, = kO
Continuity Equation:
: 1
0 = —=kvu,



Oscillator: Take One

Combine these to form the simple harmonic oscillator equation

O+ k6 =0
where the adiabatic sound speed is defined through

=Dy
s
here ¢2 = 1/3 since we are photon-dominated

General solution:

O(0)

©(n) = O(0)cos(k ) + e

sin(k )

where the sound horizon is defined as = = [ c.dn



Seeing Sound

Oscillations trozen at recombination

Compression=hot spots, Rarefaction=cold spots




Harmonic Extrema

All modes are frozen in at recombination (denoted with a subscript
x) yielding temperature perturbations of different amplitude for
different modes. For the adiabatic (curvature mode) O(0) = 0

O(n.) = ©(0) cos(ks,)

Modes caught in the extrema of their oscillation will have
enhanced fluctuations

k.S, = nmw

yielding a fundamental scale or frequency, related to the inverse
sound horizon

]{A:ﬂ'/s*

and a harmonic relationship to the other extremaas 1 : 2 : 3...



The First Peak



Extrema=Peaks

First peak = mode that just compresses

Second peak = mode that compresses then
rarefies: twice the wavenumber

Recombination Recombination
5 M~
= =
<] <]
_ sound _
k _TC/ holrlizon k _2 k

—[P|/3 |3



Extrema=Peaks

First peak = mode that just compresses

Second peak = mode that compresses then
rarefies: twice the wavenumber

Harmonic peaks: 1:2:3 1n wavenumber

Recombination

ATIT

sound
horizon

k =m/
—|¥|/3

Recombination

AT/T

k =2k

—[P|/3



Peak LLocation

The fundmental physical scale 1s translated into a fundamental
angular scale by simple projection according to the angular
diameter distance D 4

QA = )\A/DA
KA = kADA

In a flat universe, the distance 1s sismply D4 = D = 1y — n. = 1,
the horizon distance, and k4 = 7/s, = /3T /My SO

(914%&
7o

In a matter-dominated universe 7 o< a'/2 so 64 ~ 1/30 ~ 2° or

ZA ~ 200



Spatial Curvature

Physical scale of peak = distance sound travels

Angular scale measured: comoving angular
diameter distance test for curvature

Flat

Closed



Curvature

In a curved universe, the apparent or angular diameter distance 1s
no longer the conformal distance D4 = Rsin(D/R) # D

Objects 1n a closed universe are further than they appear!
gravitational lensing of the background...

Curvature scale of the universe must be substantially larger than
current horizon

Flat universe indicates critical density and implies missing energy
given local measures of the matter density “dark energy”

D also depends on dark energy density {2pg and equation of state
W = Ppg/ PDE-

Expansion rate at recombination or matter-radiation ratio enters
into calculation of £ 4.



Curvature 1n the Power Spectrum

Features scale with angular diameter distance

Angular location of the first peak
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First Peak Precisely Measured
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Dark Energy

Peaks measure distance to recombination
| SW effect constrains dynamics of acceleration

10} Dark Energy Density 1L Equation of
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Dark Energy

Flat ACDM fully consistent with CMB and other distance measures
Constant w=p/p constrained as -0.097<1+w<0.142 (95% CL)

Komatsu et a (2008)

05 F E
- 1.0
| WMAP
o WMAP+HST
1.5 WMAP-+BAO
WMAP+SN
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200




Doppler Peaks?

Doppler effect for the photon dominated system is of equal
amplitude and 7 /2 out of phase: extrema of temperature are
turning points of velocity

Effects add in quadrature:

<%> = 07(0)[cos*(ks) + sin®(ks)] = ©%(0)

No peaks in &k spectrum! However the Doppler effect carries an
angular dependence that changes its projection on the sky
n-v,xn-k

Coordinates where z || k

Y10Y£0 — Yeﬂo

recoupling j,Yy0: no peaks in Doppler effect



Doppler Eftect

Bulk motion of fluid changes the observed temperature via

(AT) )
R — nNn-v
1 dop !

Averaged over directions

(AT ) vy
T rms \/§
Acoustic solution

D —ﬁ@ = —3ch O (0)sin(ks)

V3 k k
= O(0)sin(ks)

Doppler shifts



Doppler Effect

Relative velocity of fluid and observer

Extrema of oscillations are turning points or velocity zero points

Velocity 7t/2 out of phase with temperature

Velocity maxima

¢—~~ '—.~
4 L ¢ A Y
[} 1 1 1
\\ ' v "
A 3

Velocity minima




Doppler Effect

Relative velocity of fluid and observer
Extrema of oscillations are turning points or velocity zero points

Velocity 1t/2 out of phase with temperature

Zero point not shifted by baryon drag

~
Increased baryon inertia decreases effect >
Metf V2 = const. V o< Ti’leff_l/2 = (1+R)_1/2 \
n

13 Y

Velocity maxima

PR PRI
4 L ¢ A Y
[} 1 I 1
‘\ 1 [} 'l

A 3

Velocity minima




Doppler Peaks?

Doppler effect has lower amplitude and weak features from projection

\ /Y, ‘ ’lYlo

4 F | | | N L - AET T T T T | | | ]
- Temperature peak - Doppler
°r 13 °[ no peak |
0 0y —
-2 — A —
[ P I TR T T T N T TR T T N TR T B S T ] [ PRI [T TR T T T T I TN TR NN T TR T [ T T ]
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Hu & Sugiyama (1995)



Relative Contributions
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Restoring Gravity: Continuity

Take a simple photon dominated system with gravity

Continuity altered since a gravitational potential represents a
stretching of the spatial fabric that dilutes number densities —
formally a spatial curvature perturbation

Think of this as a perturbation to the scale factor a — a(1 + ®) so
that the cosmogical redshift 1s generalized to
a a

(0ny) = —357%2 —3n,® —n,V-v,
a

so that the continuity equation becomes

. 1 .
@: —gkvv—q)



Metric Stretch

Potential wells curve or stretch space

Like the expansion of the universe, changes 1n the potential
change the wavelength of photons




Metric Stretch

Potential wells curve or stretch space

Like the expansion of the universe, changes 1n the potential
change the wavelength of photons




Restoring Gravity: Euler

Gravitational force in momentum conservation F = —mV W
generalized to momentum density modifies the Euler equation to

0, = k(O + )

General relativity says that @ and W are the relativistic analogues
of the Newtonian potential and that & ~ —W.

In our matter-dominated approximation, ¢ represents matter
density fluctuations through the cosmological Poisson equation

k*® = 4nGa’p A\,

where the difference comes from the use of comoving coordinates
for k (a® factor), the removal of the background density into the
background expansion (p,,4,,) and finally a coordinate subtlety
that enters into the definition of A,,



Constant Potentials

In the matter dominated epoch potentials are constant because
infall generates velocities as v,,, ~ knW

Velocity divergence generates density perturbations as
A, ~ —knv, ~ —(kn)*W

And density perturbations generate potential fluctuations as

d ~ A,,/(kn)* ~ —W, keeping them constant. Note that because
of the expansion, density perturbations must grow to keep
potentials constant.

Here we have used the Friedman equation H? = 87Gp,, /3 and
n= [dlna/(aH) ~ 1/(aH)

More generally, 1f stress perturbations are negligible compared
with density perturbations ( 0p < dp ) then potential will remain

roughly constant — more specifically a variant called the Bardeen
or comoving curvature ¢ 1s constant



Oscillator: Take Two

Combine these to form the simple harmonic oscillator equation

. L2 .
@+éﬁ@:—§w—¢

In a CDM dominated expansion d = ¥ = (. Also for photon
domination ¢? = 1/3 so the oscillator equation becomes

O+ U+ Ak*(O + W) =0
Solution is just an offset version of the original
O+ VU](n) =[O + V](0) cos(ks)

© + W is also the observed temperature fluctuation since photons
lose energy climbing out of gravitational potentials at
recombination



Gravitational Ringing

Potential wells = inflationary seeds of structure

Fluid falls into wells, pressure resists: acoustic
oscillations

Gravity




Effective Temperature

Photons climb out of potential wells at last scattering
Lose energy to gravitational redshifts

Observed or effective temperature

O+ WV
Effective temperature oscillates around zero with amplitude given
by the 1nitial conditions

Note: 1nitial conditions are set when the perturbation 1s outside of
horizon, need inflation or other modification to matter-radiation
FRW universe.

GR says that initial temperature 1s given by 1nitial potential



Inflation and the Initial Conditions

Inflation: (nearly) scale-invariant curvature (potential) perturbations

Superluminal expansion — superhorizon scales — "initial conditions'

Accompanying temperture perturbations due to cosmological redshift

Time

Comoving
Space
Potential perturbation ¥ = time-time metric perturbation
ort=¥Y — O0T/T= Odala = Ot/t = ¥

Sachs & Wolfe (1967); White & Hu (1997)




Sachs-Wolfe Efttect and the Magic 1/3

A gravitational potential 1s a perturbation to the temporal
coordinate [formally a gauge transformation]

ot
t
Convert this to a perturbation in the scale factor,

e [ 22 3(01-+w)/2
ol ap1/2

where w = p/p so that during matter domination

oa @

=V

a t

CMB temperature is cooling as 7' o< a™! so

Ol 5
o+v="10="2"19=- ¥
T a



Sachs-Wolfe Efttect and the Magic 1/3

A gravitational potential 1s a perturbation to the temporal
coordinate [formally a gauge transformation]

ot
t
Convert this to a perturbation in the scale factor,

e [ 22 3(01-+w)/2
ol ap1/2

where w = p/p so that during matter domination

oa @

=V

a t

CMB temperature is cooling as 7' o< a™! so

Ol 5
o+v="10="2"19=- ¥
T a



Smooth Energy Density & Potential Decay

A smooth component contributes

density p to the expansion
but not

density fluctuation op to the Poisson equation

Imbalance causes potential to decay once smooth
component dominates the expansion



ISW Effect

Gravitational blueshift on infall does not cancel redshift
on climbing out

Contraction of spatial metric doubles the effect: AT/T=2A®

Effect from potential hills and wells cancel on small scales




ISW Effect

Gravitational blueshift on infall does not cancel redshift
on climbing out

Contraction of spatial metric doubles the effect: AT/T=2A®

Effect from potential hills and wells cancel on small scales




ISW Eftect

ISW eftfect hidden in the temperature power spectrum by primary
anisotropy and cosmic variance

109

10-11 -

- 11=-0.8
(1 S ——

I ' L PN |
10 100

[plot: Hu & Scranton (2004)]



Effective Temperature
Effective temperature initially @+W=W/3 and

1S negative 1n
Effective tem;

an overdensity
perature oscillates around zero

Effective tem;

perature becomes observed

temperature after gravitational redshift

—AT

me



The Second Peak



Baryon Loading
Baryons add extra mass to the photon-baryon fluid

Controlling parameter 1s the momentum density ratio:

n= P + P ( a )
— ~ _3
Py T P 10
of order at recombination

Momentum density of the joint system is conserved

(py + Py)vy + (b + Po)0s = (Py + Dy + pb + Py) 0y
— (1 + )(:07 ‘|‘pv)vvb

where the controlling parameter 1s the momentum density ratio:

=

P+ Pp ( a )
Pyt Py 102

of order at recombination



Second Peak First Measured
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New Euler Equation

Momentum density ratio enters as

(L4 oy +2)vas) = 42+ )y + 2V
— Vp, — (1+ )(:07 ‘|‘p’y)vqj

same as before except for (1 + ) terms so

(1 4+ vy =kO+ (1+ kU
Photon continuity remains the same

. 3 .
@ = —gvvb—q)

Modification of oscillator equation

(14 )6 + k0 = —2R(L+ ¥ — [(1+ )d]



Baryon & Inertia

Baryons add 1nertia to
the fluid

Equivalent to adding mass
on a spring

Low Baryons High Baryons

Initial Conditions

. L. .. { Maximal Raretaction)
Same 1nitial conditions . A .
Even
. . Peaks
Same null 1n fluctuations AT=0
(Odd
Peaks
Unequal amplitudes of _|M"'1

Compression
extrema -




Oscillator: Take Three

Combine these to form the not-quite-so simple harmonic oscillator

equation
d : k2 d :
— © KO =——U—  — )
(O sV
where — pVb / 10.75
11
30

In a CDM dominated expansion ® = ¥ = 0 and the adiabatic
approximation R /R < w = ke,

O+ (1+ W(n=©+ 14+ )¥]0)cos(k )



Baryon Peak Phenomenology

Photon-baryon ratio enters in three ways

Overall larger amplitude:

O+ (14 )W) = 5(1+3)w(0)

Even-odd peak modulation of effective temperature

O + Vlpears = [E(1+37) =3 ] é\IJ(O)
© + U], — [©+ ¥, =[-6]=¥(0)

Shifting of the sound horizon down or ¢4 up

CyoxvV1+

Actual effects smaller since  evolves



A Baryon-meter

Low baryons: symmetric compressions and
rarefactions

—AT

P I o™ o
4 ‘. V2 ‘
I 1 1 1
\ ' ! Y
. 3 .
Q.l' QII'

Low Baryons

t1



A Baryon-meter
LLoad the fluid adding to gravitational force

Enhance compressional peaks (odd) over
rarefaction peaks (even)

—AT

¢—~~ '—-~
" 2\ ¢ \‘
| | [ ]
v\ Y )./ 1me
\\_' ‘ ‘ ~-—I

Baryon Loading



A Baryon-meter

Enhance compressional peaks (odd) over
rarefaction peaks (even)

e.g. relative suppression of second peak

[AT |

RS e”

L4 N ¢ ) 3

' 3 . \

' ' \ 1 .

o 4 t
\ I I /_ 1me



Photon Baryon Ratio Evolution

Oscillator equation has time evolving mass

d
pl
n

Effective mass is is =3 =(1+ )

)+ k0 =0

Adiabatic invariant

E 1 1
I wA? =23 L A2O<A2(1+ )1/2:const.
W 2 2

Amplitude of oscillation A o (1 4+ )~!/* decays adiabatically as
the photon-baryon ratio changes



Baryons 1n the Power Spectrum
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Higher Peaks



Radiation and Dark Matter

Radiation domination:
potential wells created by CMB 1tself

Pressure support = potential decay = driving

Heights measures when dark matter dominates

. DCL“ E-l }Ilr .
and

Gravitational Driving





Driving Effects and Matter/Radiation

Potential perturbation: kY = -4AnGa?dp generated by radiation

Radiation — Potential: inside sound horizon 0p/p pressure supported
op hence ¥ decays with expansion

Hu & Sugiyama (1995)




Driving Effects and Matter/Radiation

Potential perturbation:

Radiation — Potential:

Potential - Radiation:

kY = -4AnGa?dp generated by radiation

inside sound horizon 0p/p pressure supported
op hence ¥ decays with expansion

Y—decay timed to drive oscillation
2% + (1/3)¥ =—(5/3)¥Y — 5x boost

Feedback stops at matter domination

Hu & Sugiyama (1995)




Driving Effects and Matter/Radiation

Potential perturbation:

Radiation — Potential:

Potential - Radiation:

kY = -4AnGa?dp generated by radiation

inside sound horizon 0p/p pressure supported
op hence ¥ decays with expansion

Y—decay timed to drive oscillation
2% + (1/3)¥ =—(5/3)¥Y — 5x boost

Feedback stops at matter domination

Hu & Sugiyama (1995)




Oscillator: Take Three and a Half

The not-quite-so simple harmonic oscillator equation 1s a forced
harmonic oscillator

2l
Sd/r]

changes 1n the gravitational potentials alter the form of the

(0_2@) + kO = —k—Q — (:2i(c_2 )
S S 3 Sdn S

acoustic oscillations

If the forcing term has a temporal structure that 1s related to the
frequency of the oscillation, this becomes a driven harmonic
oscillator

Term involving V 1s the ordinary gravitational force

Term involving ¢ involves the ® term in the continuity equation as
a (curvature) perturbation to the scale factor



Potential Decay

Matter-to-radiation ratio

'O_mz thZ( ¢ )
Pr 103

of order unity at recombination in a low (2,,, universe

Radiation is not stress free and so impedes the growth of structure

k*® = AnGa’p, A\,

4

A, ~ 40 oscillates around a constant value, p, o< a~~ so the

Netwonian curvature decays.

General rule: potential decays if the dominant energy component
has substantial stress fluctuations, i.e. below the generalized sound
horizon or Jeans scale



Radiation Driving

Decay 1s timed precisely to drive the oscillator - close to fully
coherent

0+ W](n) = [© + V)(0) + AV — Ad
= SW(0) - 20(0) = 2W(0)

5 x the amplitude of the Sachs-Wolfe effect!

Coherent approximation is exact for a photon-baryon fluid but
reality 1s reduced to ~ 4 x because of neutrino contribution to
radiation

Actual initial conditions are © + ¥ = W /2 for radiation

domination but comparison to matter dominated SW correct



External Potential Approach

Solution to homogeneous equation

(14 R) Y4cos(ks), (1 + R)™Y4sin(ks)

Give the general solution for an external potential by propagating
impulsive forces

(1+ R)V40(n) = ©(0)cos(ks) + g [@(O) + iR(O)@(O) sin ks

n
+ g / dn' (1 + R")*/*sin[ks — ks']
0

where

. R . k2
= —d——— P T
1+ R 3

Useful 1f general form of potential evolution 1s known



Dark Matter in the Power Spectrum
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Third Peak First Measured

500 1000 1500
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Damping Tail



Dissipation / Diffusion Damping

Imperfections in the coupled fluid — mean free path A in the baryons

Random walk over diffusion scale: geometric mean of mfp & horizon

7LD ~ }LC\/N ~ \/kCn >> 7\.C
Overtake wavelength: Ap~ A; second order in A-/A

Viscous damping for R<1; heat conduction damping for R>1

N:T]/7LC

—— perfect fluid

1 1 1 I
500

1000

Silk (1968); Hu & Sugiyama (1995); Hu & White (1996)




Dissipation / Diffusion Damping

Rapid increase at recombination as mfp T
Independent of (robust to changes in) perturbation spectrum

Robust physical scale for angular diameter distance test (€2, €24)

Recombination

—— perfect fluid

—— recombination

500 1000

Silk (1968); Hu & Sugiyama (1995); Hu & White (1996)




Damping
Tight coupling equations assume a perfect fluid: no viscosity, no

heat conduction

Fluid imperfections are related to the mean free path of the
photons 1n the baryons

L' where 7 = n.ora

Ao =T
1s the conformal opacity to Thomson scattering

Dissipation is related to the diffusion length: random walk
approximation

Ap = VNI = /11/he Ao = V1o

the geometric mean between the horizon and mean free path

Ap /s ~ few %, so expect the peaks :> 3 to be affected by
dissipation



Equations of Motion

Continuity

@:—g?}v—q), 5[):—/62}5—3(1)

where the photon equation remains unchanged and the baryons
follow number conservation with p, = myny

Euler
: k :
v, = k(@4 V) — e T(vy — Vp)
vy = —gvb—kk\lf%—%(vv — )/ R

where the photons gain an anisotropic stress term 7., from radiation
viscosity and a momentum exchange term with the baryons and
are compensated by the opposite term 1n the baryon Euler equation



Viscosity

Viscosity 1s generated from radiation streaming from hot to cold
regions

Expect

lizy ™ Wy
generated by streaming, suppressed by scattering in a wavelength
of the fluctuation. Radiative transfer says
T, ~ 24,0,
where A, = 16/15

k
’l.}fy — k(@—l—\If) — §AU foy



Viscosity & Heat Conduction

Both fluid imperfections are related to the gradient of the velocity
kv, by opacity 7: slippage of fluids v, — v,

Viscosity 1s an anisotropic stress or quadrupole moment formed by
radiation streaming from hot to cold regions

m=0



Damping & VISCosIty

Quadrupole moments:

damp acoustic oscillations from fluid viscosity
generates polarization from scattering (next lecture)

Rise in polarization power coincides with fall in
temperature power — | ~ 1000




Oscillator: Penultimate Take
Adiabatic approximation (w > a/a)

: k
O~ —g’l}fy
Oscillator equation contains a O damping term
d : : k? d .
2 —2 2 2 2 _9
— O AO + kO =——V —c,— o
CS d,r] (CS ) _|_ —|_ CS 3 CS dT] (CS )
Heat conduction term similar in that it 1s proportional to v., and 1s
suppressed by scattering . Expansion of Euler equations to
leading order in gives
R2
Ap =
I+ R

since the effects are only significant if the baryons are dynamically
important



Oscillator: Final Take

Final oscillator equation

. . 1.2 d .
(c;?0) + O + k*c’O = —g\If — c?d—n(cjcb)

2 <
Sdn

Solve 1n the adiabatic approximation

O exp(i/wdn)

—w? + (A, + Ap)iw + k*c2 = 0



Dispersion Relation

Solve
w? = k¢ [1 +i (A, + Ah)}
w = tke, _1 + % (A, + Ah)]
= +kc, _1 + % (A, + Ah)]
Exponentiate _

. _ 1
exp(i/wdn) — Liks exp_—k2/d77§ (Av+Ah)]

= ™" exp[—(k// )’

Damping is exponential under the scale



Diffusion Scale

Diffusion wavenumber

_/ 6(11+R) Gg+(1}f}2)>

Limiting forms

, 116
lim = ——
R—0 615

. 1 /
lim — —
R—o0 0

Geometric mean between horizon and mean free path as expected
from a random walk

:Q_WNQ_W( )1/

V6



Damping Tail Measured
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Standard Ruler

Damping length 1s a fixed physical scale given properties at
recombination

Gemoetric mean of mean free path and horizon: depends on
baryon-photon ratio and matter-radiation ratio

00T T T T T T

10
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Standard Rulers
Calibrating the Standard Rulers

Sound Horizon

Damping Scale




Consistency Check on Recombinaton

100_| T T T 111

10_—

fixed [a, Po/Py> Pm/Pr



The Peaks
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Lecture I: Summary

CMB photons emerge from the cosmic photosphere at z ~ 10°
when the universe (re)combines

Temperature inhomogeneity at recombination becomes anisotropy
to the observer at present

Initial temperature inhomogeneities oscillate as sound waves in the
plasma

Harmonic series of peaks based on the distance sound travels by
recombination

Distance can be calibrated 1f expansion history 1s known and
baryon content known

Angular scale measures the angular diameter distance to
recombination involving the curvature and to a lesser extent the
dark energy



Lecture I: Summary

Gravitational potential redshift combines with gravitationally
induced 1nitial perturbation to form the Sachs-Wolfe effect

Baryon loading enhances odd numbered peaks so that the ratio of
first to second peak height determines the baryon density

Decay of potentials during radiation domination drives oscillations
so that the relative peak heights across the first three peaks
determines the matter-radiation ratio

Fluid imperfections due to viscosity (quadrupole stresses) and heat
conduction dissipate acoustic waves in a manner predicted by
baryon density and matter-radiation ratio

Strong consistency checks for recombination physics, angular
diameter distance and source of acoustic polarization
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