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First Stars: Overview

Ab Initio Structure Formation

• Motivation 

• Physics & Chemistry

• Methods

• Results
• Very massive first stars

• First HII regions

• UV dissociation of H2?

• & Observations

• High-z SNe rate

Summary
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Initial Conditions of Structure Formation

• CMB, SNIa, Galaxy Surveys, weak 
lensing, etc. enable precision cosmology. 

• CMB hot and cold spots indicative of large 
scale density perturbations

• Within !CDM density fluctuations 
expected down to free streaming scale

• Density fluctuations Gaussian at a given 
scale

• Statistically understood and predictable at 
all scales and redshifts above  ~ 100, 

analytically because: !"#"$$%&



Density perturbations in CDM

Weakly Interacting Massive Particle
   favored mass range: 0.1-100GeV   ->
   classical free streaming scale  6x10-13Mo (m/1GeV)-4.

   free streaming SUSY:  ~1x10-6Mo (Schwartz et al 2001)

Scale-free power spectrum of Gaussian initial density perturbations
DM objects build up from the free streaming scale to galaxy size

!M/M

MMFS

Galactic mass scales

Peebles & Dicke 1968

Natural Biasing in CDM

• Small things form first. Period.

• Very first things form on top of larger ones
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Physics & Scales

• Physics problem:

• Initial Conditions: 

Constituents, Density 

Fluctuations, Thermal 

History

• Physics: Gravity, MHD, 

Chemistry, Radiative 

Cooling, Radiation 

Transport, Cosmic Rays, 

Dust drift & cooling, 

Supernovae, Stellar 

evolution, etc.

• Transition from Linear to 

Non-Linear:

• Use a computer!

Ralf Kähler & Tom Abel for PBS
Origins. Aired Dec 04
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Jeans Mass, when can Gravity win?

tff =
√

3π

32Gρ

tsc =
r

cs

M =
4π

3
r3ρ

r = cs tff MJeans ∝ T 3/2ρ−1/2

so we need to know the temperature ...

Peebles & Dicke 1968, Hutchins 1976, Couchman & Rees 1986, 

P ∝ ρ5/3 T ∝ ρ2/3 MJeans ∝ ρ1/2

γ = 1 P ∝ ρ T = const. MJeans ∝ ρ−1/2

γ =
5
3

P ∝ ργ



Thermal History of the IGM

1+z

<TIGM>
Reionization 6<z<30

Recombination z~1090

Thermal decoupling z~130

(1+z)

(1+z)2

104

300

10

Thermal and chemical history of the intergalactic medium
  - low IGM temperature in the dark ages"
  - some free electrons left over from recombination
     -> allow coupling through Compton scattering
     -> catalysts for the chemistry

TCMB

T ∝ ρ2/3

ρ ∝ (1 + z)3

T ∝ (1 + z)2
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Residual Ionization Fraction

• After recombination, the recombination reaction time 
scale gets long -> Freeze Out

• x ~ 10-4

trec =

ne

krec ne np

krec ∼ 2 × 10
−13

(

T

104K

)

−0.9

cm
3
s
−1

n̄B ∼ 2 × 10−7(1 + z)3cm−3

Peebles  1968

∼ 2000
x

years @ z = 1100
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• Atoms and molecules have very complex intrinsic properties, and their chemical 

behavior varies sometimes drastically with the specific quantum-mechanical state they 

occupy. For atoms and ions at moderate or low densities like in the solar corona 

(electron number density ne ~ 108 - 109 cm ), the following features of thermo-dynamic 

equilibrium do not hold (Sobelman et al. 1979):

• Boltzmann distribution of atoms over excited states. 

• Saha distribution of atoms over degrees of ionization. 

• Principle of detailed balance. 

• The velocity distribution of the free electrons is, however, as a rule nearly always 

Maxwellian. In this low-density limit we know that the level distributions are given by, 

where Nk
i denotes the number density of the species i in its level k,        , the rate 

coefficient for excitation from level j up to level k, Ak the total probability for 

spontaneous transition from all higher levels down to k. This approximation is 

applicable, if, ne  << Ak/           ~ at least 1e17 /cm3 electron densities. 

• One important assumption here is that collisional excitations outweigh radiative 

excitations which is always true as long as there are only moderate external radiation 

fluxes.

• For us the most important point is that we find nearly every atom in its ground state.

Coronal Limit

Fi
rs

t 
St

ar
s

Tom Abel
KIPAC/Stanford

Primordial Gas Chemistry

High density:
3H -> H2 + H
#13 changes

dni

dt
= C − D ni
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Cooling by H2 molecules
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ė = −nH2 nHΛ(T ) [
erg

cm3 s
]

• Density scale is introduced by 

cooling physics

• Temperature scale introduced 

by lowest rotational states of 

dominant coolant

• Introduces mass scale ~ 100 

solar mass

qualitative change at n >
∼ 104 cm−3:

n <
∼ 104 cm−3 : ΛH2 ∝ (nH nH2

) → tcool ∝ ρ−1

n >
∼ 104 cm−3 : ΛH2 ∝ nH2

→ tcool ∝ ρ0

H &
 H

e o
nly

H2, 1
e-4

 fr
act

io
n, O

T

e =
n kB T

γ − 1

tcool ≡
e

ė

Gas Density

Microgalaxy

~106  M0

?

Initial Value Problem

• Initial Conditions: COBE/ACBAR/

Boomerang/WMAP/CfA/SDDS/2DF/

CDMS/DAMA/Edelweiss/...  +   Theory: 

Constituents, Density Fluctuations, 

Thermal History

• Physics: Gravity, MHD, Chemistry, 

Radiative Cooling, Radiation Transport, 

Cosmic Rays, Dust drift & cooling, 

Supernovae, Stellar evolution, etc.

• Transition from Linear to Non-Linear:

• Using patched based structured 
adaptive (space & time) mesh 
refinement

• Differs from current day star formation:

• Complete ICs are known

• Chemistry, cooling, B, known

Ralf Kähler & Tom Abel for PBS

Origins. Aired Dec 04
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Solving Reaction Networks

- Very fast non-equilibrium solver for 12 species chemistry 
[Abel et al 97, Anninos et al 97, Turk & Abel 08 in prep]

- Use charge and nuclei conservation to speed up 
conservation

dni

dt
= C − D ni n

t+δt

i
=

Ct+δtδt + nt
i

Dt+δtδt + 1

n
t+δt

i
D

t+δt
δt + n

t+δt

i
= C

t+δt
δt + n

t
i

n
t+δt

i
− n

t
i =

(

C
t+δt

− n
t+δt

i
D

t+δt
)

δt



• Enzo: Bryan and Norman 1997-; Abel et al 97; Anninos et al 

97; Bryan, Abel & Norman 2002; O’Shea et al; Abel, Wise & 

Bryan 2006; Wang, Abel & Zhang 2008; Wang & Abel 2008 

• ~90,000 lines of code in C++ and F77

• Cosmological Radiation Hydrodynamics 

adapting in space and time

• Dynamic range up to 1e15 using quadruple 

precision coordinates in space and time

• Dynamically load balanced parallel with MPI

• Gravity, DM, Gas, Chemistry, Radiation, star 

formation & feedback

• Current new Developments @ KIPAC:  new 

dimensionally unsplit hydro algorithms, 

higher order time updates, exact 3D 

radiation transport, very high density 

chemistry, HD & fine structure line cooling, 

relativistic hydro, MHD, new visualization 

toolkits

Cosmological Adaptive 

Mesh Refinement
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First Structures
in the Universe
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The First Stars

Simulation: Tom Abel (KIPAC/Stanford), Greg Bryan (Columbia), Mike Norman (UCSD)

Viz: Ralf Kähler (AEI, ZIB), Bob Patterson, Stuart Levy, Donna Cox (NCSA), Tom Abel 

© “The Unfolding Universe” Discovery Channel 2002
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KIPAC/Stanford Tom Abel (KIPAC/Stanford), Greg Bryan (Columbia), Mike Norman (UCSD), Science 2001

First cooling objects
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Evolution of the Collapse

100 R! ABN02

10 rsun

100 AU

1 pc

X Y Z

Turk, Abel & O’Shea 2008 in prep

First 

Protostars

X Y Z

10 rsun

100 AU

1 pc

Turk, Abel & O’Shea 2008 in prep
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Accretion Time -> Mass Scale of FS?

Kelvin Helmholtz 

time at ZAMS

ABN02
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Growth of the star

Omukai & Palla 03, Yoshida, Omukai, 
Hernquist & Abel 2006

Recap

First Stars are isolated and very massive 

• Theoretical uncertainty: 30 - 300 solar mass

Many simulations with four very different numerical techniques and a large range of 
numerical resolutions have converged to this result. Some of these calculations capture over 
20 orders of magnitude in density and reach the proto-stellar accretion phase! 

Non-equilibrium chemistry & cooling, three body H2 formation, chemical heating, H2 line 
transfer, collision induced emission and its transport, and sufficient resolution to capture 
chemo-thermal and gravitational instabilities. Stable results against variations on all so far 
test dark matter variations, as well as strong soft UV backgrounds. 

Perfectly consistent with observations! 
Could have been a real problem! 

• New: Proto-stellar densities. First 10 Jupiter masses 
understood. Another ~13 mass doublings to go... 

cosmological: Abel 1995; Abel, Zhang, Anninos & Norman1998; Abel, Bryan & Norman 2000, 2002; O#Shea et al 2006; Yoshida et al 

2006; Gao et al 2006, O#Shea & Norman 2007, Yoshida et al 2008 in prep; Turk, Abel & O#Shea 2008 in prep

idealized spheres: Bodenheimer 1986; Haiman et al 1997; Omukai & Nishi 1998; Bromm et al 1999,2000,2002; Ripamonti & Abel 2004 
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Technical Progress with Enzo
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AMR Refinment levels

 1Mpc - 3e9cm = 0.1 ls i.e. 40 cells across the Sun  = 1e15 dynamic range.  >1e25 range in density
Unlikely to need much more. I.e. generally physics not resolution limited.

512 dynamic range 

1e5 dynamic range 

1e10 dynamic range 
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 Heger &Woosley 2001

Non-rotating , 

non-magnetic 

stellar evolution 

models ...



Clear consequences of very massive first stars:

• Entire mass range are strong UV emitters

• Live fast, die young. (~2.7 Myr)

• Fragile Environment

• Globular Cluster mass halo but ~100 times as large -> small vesc ~ 2 km/s

• Birth clouds are evaporated

Focus on point sources

Early methods: Abel, Norman & Madau 1999 ApJ; 
Abel & Wandelt 2002, MNRAS; Variable Eddington 
tensors: Gnedin & Abel 2001, NewA

Latest: Abel, Wise & Bryan 06 ApJL, Wise & Abel 
2007 and Wise, Abel, Wang 2008 in prep. 
Keeps time dependence of transfer equation 

Exact Adaptive ray-tracing of PhotonPackages 
using HEALPIX pixelization of the sphere. Photon 
conserving at any resolution.

Parallel using MPI and dynamic load balancing.

Fully coupled with non-equilibrium chemistry and 
hydrodynamics. 

Transfer done along adaptive rays
Case B recombination

1

c

∂Iν

∂t
+

∂Iν

∂r
= −κIν

3D Cosmological Radiation Hydrodynamics
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Early HII regions in 3D

Abel, Wise & Bryan 06 ApJL

3kpc, 1/4 box150pc

O#Shea, Abel, Whalen & Norman 05
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Simulation: John Wise & Tom Abel

Visualization: Ralf Kähler, Wise & Abel
Custom GPU based volume renderer for adaptive grids by Ralf Kähler, John Wise & Tom Abel

Pop III.2

• Exciting development over past three years. 

• Stars forming from previously ionized yet not metal 

enriched material typically will give a factor of a 

few lower masses. 

• Profound consequences for metal enrichment and 

studying the fossil record.

• Can no longer neglect e- and proton collisions for 

H2 cooling (Glover & Abel 2008)

3D simulations: O’Shea et al 2005, 

Yoshida et al 2007, Johnson et al 2007 O’Shea, Abel & Norman 2005

Insignificant BH accretion - no mini quasars through this 

process, nor ubiquitous pre-cursors of Quasars. 

Alvarez, Wise & Abel in prep.

solid: with radiation feedback

dotted without feedback



Full 3D radiation hydro simulations around the first stars
Simulation: Tom Abel, John H. Wise, Greg Bryan 06
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Early Metal Enriched Stars?

3
0
0
 p

c

Wise & Abel 06
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Supernovae & GRBs at high redshift?

Minimum Halo mass forming one star per halo

Abundance of these halos in 
number per comoving Mpc3 

Background in H2 dissociating photons

SNe/dz/square degree/observed year

SNe at redshift > z per square degree and observed year

radiative feedback, self-consistent treatment
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Recap

First Stars are isolated and very massive

Their HII regions evacuate their parent halos

• Metals at high metallicity - low density for tens of millions of 
years

• Remnant Black Holes at Low Density for a long time

• Pop III.2 stars still massive yet lower mass than the very first 
stars

Let#s make Galaxies, one Star at a Time, next time. 
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Crete 2008

LECTURE 2

Custom GPU based volume renderer for adaptive grids by Ralf Kähler, John Wise & Tom Abel Simulation: Marcelo Alvarez
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Making Galaxies

Molecules dissociated?

One Star at a Time

Star Formation at all epochs

Turbulent Heating

Magnetic Fields

Viz: Kähler & Abel, Model: Alvarez & Abel

Galaxy Formation models

missing:                             included:

• B field

• Cosmic Rays

• Radiation Transport & Physics

• Molecules

• Dust

• Radiation Pressure on Dust

• HII regions

• DM dynamics

• “Hydrodynamics”

• Some cooling

• “Star formation”

• “Supernova feedback”

• “AGN feedback”

Not ab initio
Simeis 147

Orion

Sombrero
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H2 can be dissociated by photons!

• so perhaps after the very first stars formed 
there is no reason to worry about molecules 
anymore? Fi
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s
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Lyman Werner Band Dissociation

electronic excited states above the binding energy! 
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Lyman Werner Bands
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Olbers Integral & Background vs Direct

F ∝

1

r2

N ∝ r
3

Flux from one source

Number of Sources

Assume infinite number of infinitely old sources
in an infinite Universe.

Total Flux diverges
Why is the night sky dark?
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Lyman Werner Bands

Haiman, Abel and Rees 2000
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Cosmological PDRs

Haiman, Abel and Rees 2000
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 Redshift 20, 
 600 comoving kpc, 
 2x288^3 particles
 > 40 million particles

computed for different 
assumed LW fluxes

Yoshida, Abel, Hernquist, Sugiyama 2003

˙nH2
+ = −kLW nH2

kLW
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H2 Negative Radiative Feedback

"

   Haiman, Loeb & Rees 1997
   Ciardi, Ferrara and Abel 2000
   Haiman, Abel and Rees 2000,
   Machacek, Bryan and Abel 2001
   Glover & Brandt 2001

Yoshida, Abel, Hernquist, ""         
Sugiyama 2003 
Wise & Abel 2007
O#Shea & Norman 2007

Machacek, Bryan and Abel 2001



Strong H2 suppression from dissociating UV background? No!

Machacek, Bryan, Abel 2002

John Wise & Tom Abel, ApJ 2007

O’Shea, Norman 2007

1.2 proper kpc
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Key Fact

• Any region in the Universe forming structure will first 
have halos in the mass range form 1e5 to 3e6 solar 
masses that cool via molecular hydrogen

• All simulated cases so far make individual stars in the 
centers of them. 

• Neglecting Molecular Cooling is not justified, ever. 

Galaxies one Star at a Time

• Cosmological Initial Conditions starting at z~200. Adaptive mesh refinement with 12 

levels of a factor of 2, dynamic range of 5e5, mass resolution down to 0.01 solar 

mass in high density regions.

• H2 fraction > 5e-4  &  Core less than 0.1 pc & Converging flow -> Form PopIII star

• Assume 170 solar mass stars or 100 solar mass stars either gives strong pair 

instability supernovae or no supernovae with black hole remnant.

• Gather assumed stellar mass into a particle, follow radiation from its main sequence 

and if a supernova is assumed start at 0.01 pc as a thermal bomb. 

• Study the galaxy properties under these different assumptions.

Galaxies, one star at a time

 John Wise & Tom Abel (KIPAC) John Wise & Tom Abel (KIPAC)



First few hundred million years: Cosmic Fireworks

 John Wise & Tom Abel 

(KIPAC)

~7 kpc

10,000 such patches make 

Milky Way

~ 1e5 popIII remnants

early metal enrichment

Ly
m

an
 a

lp
ha

 fo
re

st
 a

bs
or

be
r

...Including H2 and Pop III stars
How big of a difference?

Tlog10 rho 1.2 kpc proper

Wise & Abel 
2007

Simulation: John Wise & Tom Abel 2007

~108 solar mass galaxy

z~ 20

one star at a time

~ 20 massive stars in progenitors

radiative feedback only

2 kpc across

logarithm of gas density

logarithm of gas temperature

Making Galaxies one Star at a Time

Phase diagram

cosmic mean

virial density

virial T

largest halos



How big of a di!erence do Pop III stars make 
for the first galaxies?

N★ (< rvir) N★ (< 3rvir) Mgas / Mtot "gas

SimA-Std

SimA-SF

SimB-Std

SimB-SF

SimB-SNe

… … 0.14 0.010

14 16 0.081 0.053

… … 0.14 0.010

13 19 0.11 0.022

7 13 0.049 0.097

1/2

1/3 10

2

5
transfer only

transfer only

Halo Mass
[M!]

Spin 
Parameter

Simulation A

Simulation B

3.47 x 107 0.030

3.50 x 107 0.022

4/5
H+He cooling

H+He cooling

Wise & Abel 2007

full

Feedback is di!erent from 
an e!ective equation of 
state



Virialization of Baryons

CoolingCooling adiabaticadiabatic

Halo Mass
[M!]

Central Jeans 
Mass
[M!]

Central Jeans 
Length

[pc]

Spin 
Parameter

Simulation A

Simulation B

3.47 x 107 4.7 x 105 7.9 0.030

3.50 x 107 1.0 x 105 1.5 0.022

Wise & Abel 2007

Virialized kinetically

solid: adiabatic
dashed: cooling

Turbulent Mach 
numbers > 1

If gas can cool to 
tens of Kelvin 
Mturb > 10

Wise & Abel 2007

Turbulence in proto-galaxies

Shocks down to 
smallest scales

Do not diminish 
dramatically 
inside virial 
radius

Wise & Abel 2007

Turbulence in proto-galaxies

y component of 
vorticity (rot(v)) in 
x-z plane 

Shocks down to 
smallest scales

Local angular 
momentum more 
relevant than 
global amount!

Wise & Abel 2007



Virialization Heating

Wang & Abel 2007

halo mass for which virial heating = cooling 

Gas in halos with less than 1e12 solar masses
cannot virialize with hydrostatic pressure!

It must virialize with kinetic (turbulent) energy 
or collapse very rapidly

cold / hot flow transition

Effects of Pop III Stars on Galaxy Formation are being 

modeled. What’s needed next?

• Carbon and Oxygen fine structure line cooling

• Well understood microphysics: quite straightforward to do

• Dust: formation, destruction, cooling, radiation pressure on, drift, coupling to B, ....

• Not straightforward at all. Best local example, Carbon stars, irrelevant early on.

• How do most Stars form? 

• Still a puzzle. Long lived molecular clouds, multiplicity, Universality of IMF, ...

• Magnetization of ISM, IGM from early supernovae

• Completely new issues that have not been addressed before

• Cosmic Ray production in early Supernovae and perhaps structure formation 

shocks?

• Only the very simplest of ideas explored so far
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CALIFORNIA NEBULA, NGC1499

500 pc = 1,500 light years away

30 pc long

Xi Persei, !"#$ mankib, Shoulder of Pleiades:

O7.5III

330,000 solar luminosities

~40 solar masses, Teff=3.7e4K
Local Star Formation

• A 1e4 Msun cloud, radius 3.6 pc with central flat 

core (~1000 Msun) and r-2 envelope, central density

~ 104 /cm3.

• Initial Kolmogorov turbulent velocity spectrum with Mach!10.

• We model proto-stellar growth by Bondi-Hoyle!accretion.

• Cooling down to 10 K using a fitted cooling function, which

essentially keeps gas isothermal.

• Top grid resolution 128^3. Four level of AMR level using

Jeans refinement criterion (Jeans number 4), corresponding 

to 1000 AU best resolution.

• Adaptive ray tracing for UV ionizing radiation coupled with 

HLL-PLM Hydro/MHD solver.

• Main sequence luminosity for radiating stars (>10 Msun).

Wang & Abel 2008, in progress.



Initial Conditions for Star Formation

• Force driving with fixed pattern

• Shaped force to mimic central 

concentrated conditions

• 5 levels of refinement

• Jeans length at least resolved by 8 

cells

Using local HII regions as Laboratory for Star Formation

• Massive Stars light up initial conditions

• IFU spectroscopy possible in many lines

• Radio - Xrays

Ianucci, Wang & Abel in progress

Galactic magnetic field amplification
I) The simplest conceivable numerical experiments.

• First MHD global model of a disk

• Isolated NFW halo 1e10 Msun at z=2 with concentration=10, 

modeled as external potential

• Spherical gas distribution with NFW profile and baryon 

fraction 0.1

• Rotation speed corresponds to spin parameter 0.05.

• Gaussian random velocity field with amplitude the halo virial 

velocity

• Uniform 1e-9G  B field in z direction 

* Faraday rotation measured in high-z damped Lya system

* Beryllium and boron abundance in galactic halo stars

* Protogalactic turbulence due to merger, etc.

* Supernova ejecta and extended radio lobes

• Cooling function down to 300 K using the Sarazin & White fit.

• Local temperature floor to avoid artificial fragmentation 

instead of star particle
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Computational Physics is fun

• continuously building better tools

• Is typically more general and minimizes need for assumptions

• solve problems that are intractable analytically

• Great starting point to develop analytical theory



Summary

• Wide range of birth, life & death of the first massive stars are 

being explored on super computers. 

• H2 always relevant in early structure formation. Period. 

• Ab initio calculations of galaxy formation: one Star at a Time 

• Enormous impact from early feedback: fB, spins, etc. 

• kpc scales predicted with great confidence. Larger scales 

require more a priori phenomenological inputs. 

• Now is the Time !

• Still more physics we need to implement ... 

• Magnetic fields are quickly amplified to equi-partition values 

and lead to magnetic flux in halo material. We expect also 

galaxies at very high redshifts to contain fields of significant 

strengths. Look for synchrotron emission from these. 

• HII regions, supernova remnants as well as planetary nebulae 

should be excellent places to test our methodology required to 

make progress in galaxy formation

Simulation: Marcelo Alvarez, John Wise & Tom Abel 2007  Visualization: Ralf Kähler, Alvarez & Abel

Simulation: John Wise & Tom Abel 2007  Visualization: Ralf Kähler, Wise & Abel
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