T cell differentiation, migration and immune regulation

Antonio Lanzavecchia

Institute for Research in Biomedicine Bellinzona, Switzerland

lanzavecchia@irb.unisi.ch

Increased life expectancy and medical progress

From naïve to memory T cells

Cell migration in the immune response

Dendritic cell maturation in vitro

	Maturation					
		GM-CSF + IL-4 ►		stimuli 24 h	· *	
	monocyte	im	mature DC		"active"	"exhausted"
Antigen capture ¹		Macropinocytosis Mannose R	\$ ++ ++		+ +	-
Antigen presentation ²		MHC II synthesis MHC II halflife MHC I synthesis	+ 10 h +		++ ++	- >100 h ++
Costimulation ¹		B7	-		+	+
Migration ⁴		CCR5 CCR7	+ -		(+) +	- ++
Cytokines⁵		TNF IL-6 IL-1 IFN-I IL-12	- - -		+ + +/-	- - -

1) Sallusto et al *JEM* 1994; JEM 1995; 2) Cella et al *Nature* 1997; 3) Cella et al *JEM* 1999; 4) Sallusto et al *EJI* 1998; 5) Langenkamp et al *Nat Immunol* 2000

DC activation: integration of multiple stimuli

IL-12p70 production is triggered by synergic TLR stimulation and is further boosted by CD40L

- 1. T cell activation and fate determination
- 2. Human effector/memory T cell subsets $(T_{CM}, T_{EM}, Th1, Th2, Th17, etc)$
- 3. T cell traffic in steady state and inflammatory conditions (mouse)

T cell fate

"Signal strength" Polarizing cytokines

Dendritic cell

Signal strength and activation thresholds

- 1. [peptide-MHC] Rate of TCR triggering
- 2. [B7]

- Amplification
- 3. Stability of the synapse Duration of signalling
- 4. [Polarizing cytokines] Differentiation

The strength of stimulation determines T cell fate

1. T cell activation and fate determination

2. Human effector/memory T cell subsets $(T_{CM}, T_{EM}, Th1, Th2, Th17, etc)$

3. T cell traffic in steady state and inflammatory conditions (mouse)

Dynamics of T lymphocyte responses: intermediates, effectors and memory cells

- Strength / duration of stimulation
- T-DC serial encounters
- Polarizing cytokines
- Asymmetric division

- *Migratory capacity*
- Effector function
- Differentiation potential
- Survival

Two subsets of memory T cells with distinct migratory capacity and effector function

Sallusto et al. Nature 401: 708 (1999)

Peripheral tissues

T cell clonal dynamics: primary responses

T cell clonal dynamics: memory phase

Secondary response

Effector memory T

Immediate protection

Central and effector memory T cells are stable years

Tracking T cell division by CFSE dilution (Lyons & Parish)

Stimulation

Stability of central memory and effector memory T cells

CFSE-labeled T cells stimulated by antigen-loaded autologous monocytes

Antigen-specific T cells are differentially distributed in memory subsets

Central memory T (T_{CM})

T_{CM} circulate through secondary lymphoid tissues

Secrete IL-2 but little IFN-γ and no perforin

Robust proliferation capacity and transition into effector cells that can migrate to non-lymphoid tissue

Differentiation intermediates

Secondary responses

Effector memory T (T_{CM})

 T_{EM} circulate through and can reside in non-lymphoid tissue

Secrete IFN- γ and perforin but little IL-2

Limited proliferation capacity but display of immediate effector function

Terminally differentiated

Immediate protection

The Th1 / Th2 paradigm

Plasticity of cytokine gene expression in T_{EM}

Subset specific, loss of T-bet

Th17: a novel subset of CD4 effector T cells

Can we identify Th17 cells using surface markers?

Which are the pathogens that trigger Th17 responses?

IL-17 production is characteristic of a CCR6⁺ subset

Human memory T cells (CD4⁺ CD45RA⁻ CD25⁻)

Ex-vivo from blood

Mouse memory T cells (CD4⁺ CD25⁻ CD44^{hi})

Ex-vivo from spleen

Acosta-Rodriguez et al, Nat Immunol, 2007; Reboldi et al, Nat Immunol, 2009

Human Th17 memory cells co-express CCR6 and CCR4 and express RORγt

C. albicans specific memory cells are Th17

C. albicans hyphae selectively induce IL-23 and prime Th17 cells

Th17 and immunity to fungi

- Th17 memory cells express CCR6 and CCR4
- *C. albicans* specific memory cells are Th17
- The Hyphal form of *C. albicans* triggers IL-23, but not IL-12
- Th17 deficiency and candidiasis in STAT3 deficient patients (Milner et al Nature 2008; Ma et al JEM 2008)

Th17 cells might recruit neutrophils thus promoting entrapment and killing of hyphae

Th22: a new subset of T helper cells?

Thomas Duhen

IL-22-producing T cells are present in the CD4⁺ CCR6⁺ memory subset

... but most IL-22-producing cells do not produce IL-17

Skin-homing T cells (CCR4+ CCR10+ CLA+) produce IL-22, but no IL-17

Th22 clones do not express ROR-c

How are IL-22-only producing CD4⁺ T cells generated?

Plasmacytoid DC prime IL-22-producing T cells

CD4+ naïve T cells primed by allogeneic:

Cytokine production following PMA + ionomycin

CFSE

IL-6 and TNF produced by pDC are required for Th22 polarization

Vitamin D3 and pDC promote expression of CCR6 and CCR10

Th22: a module of adaptive immunity dedicated to epithelial cell physiology?

Module	Polarizing cytokine(s)	Transcription factor	Homing receptor(s)	Effector cytokine(s)	Target cell	Function
T _H 1	IL-12. IFN	T-bet	CXCR3	IFN-γ	Macrophages	Bacteria
T _H 2	IL-4	GATA-3	CCR4/CRTh2	IL-4, IL-5, IL-13	Eosinophils	Parasites
T _H 17	IL-6,IL-1β.TGF-β	ROR-γt	CCR6 / CCR4	IL-17, IL-22	Neutrophils	Fungi
Treg	?	FOXP3	CCR7 / CCR6	TGF-β	DC / T cells	Regulation
T _{FH}	IL-21	Bcl-6	CXCR5	IL-21	B cells	Antibodies
Tr1	IL-10	?	CCR7 / CCR6	IL-10	T cells	Regulation
T _H 22	IL-6, TNF	?	CCR6 / CCR10	IL-22	Keratinocytes	?

Human T cell repertoire analysis using amplified T cell libraries

Rebekka Geiger

Challenges in analyzing the human <u>naïve</u> T cell repertoire

- Low frequency of antigen-specific naïve T cells
- High activation threshold of naïve T cells
- Broad spectrum of avidities
- Limitations of peptide-based and tetramer-based approaches
- Need to measure T cell responses to complex naturally processed antigens

Analysis of naïve and memory T cell repertoires using amplified T cell libraries

Geiger et al JEM 2009

Antigen-specific CD4+ T cells in the human naïve repertoire

Frequency of KLH-specific naïve T cells

"Amplified T cell libraries" from naïve CD45RA+ CD45RO- CCR7+ CD4+ T cells

Broad range of responsiveness

Broad range of epitope specificities

PA-specific T cell line

Isolation of Ag-specific T cell clones from the naïve repertoire

Analysis of memory repertoires

Increased frequencies in the memory compartment (Tet Tox)

Increased frequencies in the memory compartment (CMV)

Selection of high avidity T cells in the memory pool

Applications

- Predict antigenicity of <u>complex</u> molecules (even whole pathogens)
- Assess immunocompetence (elderly, HIV)
- Assess memory in different T cell subsets
- Generate T cells for cellular immunotherapy

1. T cell activation and fate determination

2. Human effector/memory T cell subsets $(T_{CM}, T_{EM}, Th1, Th2, Th17, etc)$

3. T cell traffic in steady state and inflammatory conditions (mouse)

Paradigm: migration from blood to lymph nodes requires CCR7 and CD62L

NK cells migrate to reactive lymph nodes in a CXCR3-dependent fashion

Martin-Fontecha et al Nat Immunol 2004

Effector and effector memory CD8 T cells migrate to inflamed lymph nodes in a CXCR3 dependent fashion and kill antigen presenting dendritic cells

Guarda et al Nat Immunol 2007

Effector memory CD4 T cells license DC in chronically inflamed lymph nodes

Effector memory CD4 T cells license DC in chronically inflamed lymph nodes

CD4+ effector memory T cells

- migrate to chronically reactive lymph nodes via CD62P
- Constitutively express CD40L
- Trigger DC maturation
- Cause EAE in the absence of adjuvant

The role of CCR6 in experimental autoimmune encephalomyelitis

Andrea Reboldi

CCR6-KO mice (*Cook et al, Immunity 2000*)

Pathogenesis of Multiple Sclerosis

Ransohoff et al

CCR6-KO mice do not develop EAE

Mean clinical score

Hemalaun counterstain

In CCR6-KO mice MOG-reactive Th17 and Th1 cells are primed but do not migrate into the CNS

Cytokine production following restimulation with MOG peptide:

Transfer of wild-type 2D2 T cells reconstitutes disease susceptibility in CCR6-KO mice

... but on day 20 the T cells in the CNS are endogenous CCR6-/- Th1 and Th17

CCR6-KO mice transferred with CCR6+/+ GFP⁺ 2D2 T cells (Day 20)

CCR6 is not required for rolling and adhesion to inflamed endothelial cells of CNS parenchyma

Intravital microscopy

Firmly adherent CCR6-KO T cells 10min after injection in score 2 EAE mice

CCR6⁺ T cells as gate keepers for entry in an intact CNS?

In EAE, effector T cells generated upon immunization have to enter a normal non inflamed brain.

Initial entry of CCR6⁺ T cells by a <u>constitutive pathway</u> may be required to trigger subsequent recruitment of effector T cells by an <u>inflammatory pathway</u> through activated endothelial cells of the blood brain barrier.

CCR6 requirement under steady state conditions and at early time points during EAE

Which is the initial port of entry of CCR6⁺ T cells?

Routes for leukocyte migration into the CNS

Modified from Ransohoff et al, Nat Rev Immunol 2003

Is the choroid plexus the port of entry of CCR6⁺ Th17 cells?

Engelhardt and Ransohoff, Trends Immunol 2005

In CCR6-KO mice immunized with MOG+CFA lymphocytes are trapped in the choroid plexus

CCR6-KO

CD45 Ab

CD45 Ab
The CCR6 ligand CCL20 is highly expressed in epithelial cells of the mouse choroid plexus

CCL20 Ab

The CCR6 ligand CCL20 (LARC) is constitutively expressed in human choroid epithelium

Liver

Choroid plexus

lleum

Choroid plexus

Constitutive and **inflammatory** routes of entry into the CNS: a two step model of EAE pathogenesis

CCR6+ T cells as gate keepers for CNS entry

- *How do CCR6*⁺ *T cells trigger leukocyte recruitment?*
- Which are the chemokine receptors involved in late EAE?
- What is the relative contribution of Th17 and Th1 cells at different stages of the disease?
- Does CCR6-blockade have any therapeutic effect (relapsingremitting SJL model)?
- Do CCR6⁺ T cells play a role in surveillance of the CNS?

Human T cell repertoire analysis using amplified T cell libraries

Rebekka Geiger

Challenges in analyzing the human <u>naïve</u> T cell repertoire

- Low frequency of antigen-specific naïve T cells
- High activation threshold of naïve T cells
- Broad spectrum of avidities
- Limitations of peptide-based and tetramer-based approaches
- Need to measure T cell responses to complex naturally processed antigens

Analysis of naïve and memory T cell repertoires using amplified T cell libraries

Geiger et al JEM 2009

Antigen-specific CD4+ T cells in the human naïve repertoire

Frequency of KLH-specific naïve T cells

"Amplified T cell libraries" from naïve CD45RA+ CD45RO- CCR7+ CD4+ T cells

Broad range of responsiveness

Broad range of epitope specificities

PA-specific T cell line

Isolation of Ag-specific T cell clones from the naïve repertoire

Analysis of memory repertoires

Increased frequencies in the memory compartment (Tet Tox)

Increased frequencies in the memory compartment (CMV)

Selection of high avidity T cells in the memory pool

Applications

- Predict antigenicity of <u>complex</u> molecules (even whole pathogens)
- Assess immunocompetence (elderly, HIV)
- Assess memory in different T cell subsets
- Generate T cells for cellular immunotherapy

The Lanzavecchia & Sallusto Lab

Giorgio Napolitani (Th17) Andrea Reboldi (EAE) Thomas Duhen (Th22) **Rebekka Geiger** (T cell libraries) Martina Beltramello (dengue) Davide Corti (influenza) **David Jarrossay** (plasma cells) Dirk Baumjohann Annalisa Macagno Janine Stubbs Debora Pinna **Blanca Fernandez** Chiara Silacci Fabrizia Vanzetta

Eva Acosta-Rodriguez, Cordoba - Jens Geginat, Berlin -Mara Messi, Basel - Amanda Gett, Basel - Laura Rivino, Berlin

Multispecificity / Crossreactivity / Promiscuity / Degeneracy

Bostrom et al Science 2009

Antiviral activities of antibodies

affinity / avidity / accessibility

Antiviral activities of antibodies

The cellular basis of immunological memory

"Effector memory"

Plasma cells (Ab)

Effector memory T cells

"Central memory"

Memory B cells

Central memory T cells

- Fully differentiated
- In peripheral tissues
- Immediate protection

- Differentiation intermediates
- In secondary lymphoid organs
- Recall responses

B cell clonal dynamics: primary responses

Bone marrow niches for long lived plasma cells

Radbruch et al Nat Rev Immunol, 2006

B cell clonal dynamics: sustained serum antibodies

Serum antibodies to vaccinia virus are maintained constant for a lifetime

B cell clonal dynamics: secondary responses

"Original antigenic sin"

Kinetics of circulating plasma cells, memory B cells and serum antibodies

Human memory B cell subsets

