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The cryptographic hash function 
crisis and the SHA-3 competition

Cryptography ≠ security

• crypto is only a tiny piece of the security 
puzzle
– but an important one

• most systems break elsewhere
– incorrect requirements or specifications
– implementation errors
– application level
– social engineering

Cryptography ≠ security
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Information processing

Continuum between software 
and hardware
ASIC (microcode) – FPGA – fully 

programmable processor

Everything is always 
connected everywhere 

Cryptography 
everywhere

Cryptology: basic principles
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Block ciphers

• process blocks of: 64…128 bits
• memoryless
• repeat simple operation (round) many times

block 
cipher

P1

C1

block 
cipher

P2

C2

block 
cipher

P3

C3

Block ciphers

DES (56 bits)
3-DES (112-168)
IDEA (128)
KASUMI (128 in 3G, 64 in 2G)

insecure secure?
0 50 80 128

Symmetric key lengths

AES (128-192-256)

RC6

64-bit block 128-bit block

56 bits:   4 seconds with $5M
80 bits:   2 year with $5M 

128 bits: 256 billion years with $5B
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Symmetric key lengths and Moore’s “law”
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Moore’s “law”: speed of computers doubles every 18 months

MAC algorithms
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MAC algorithms

• example schemes: CBC-MAC, HMAC

• result is 4-20 bytes
• same speed as block cipher/hash function
• requires shared secret to verify

Public key cryptology: digital signature

Clear  
text SIGN

VER
IFY 

Clear  
text

Public keyPrivate key

Clear  
text

Clear  
text
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Digital signatures

• example schemes: RSA, DSA, ECDSA

• result is 40-256 bytes
• much slower than a MAC algorithm
• requires no shared secret to verify

• but how do I sign a document that is 1 Mbyte? 

Hash functions

X.509 Annex D
MDC-2
MD2, MD4, MD5
SHA-1

This is an input to a crypto-
graphic hash function.  The input 
is a very long string, that is 
reduced by the hash function to a 
string of fixed length.  There are 
additional security conditions: it 
should be very hard to find an 
input hashing to a given value (a 
preimage) or to find two colliding 
inputs (a collision). 

1A3FD4128A198FB3CA345932h

RIPEMD-160
SHA-256
SHA-512

SHA-3
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Agenda

Definitions

Iterations (modes)

Compression functions

SHA-{0,1,2}

13

SHA-3 Bits and bytes

Hash function flavors

cryptographic hash function

MDCMAC

OWHF CRHF
UOWHF

(TCR)

this 
talk
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Security requirements (n-bit result)

h
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≠

h(x’)h(x)

Informal definitions (1)

• no secret parameters
• input string x of arbitrary length  ⇒ output h(x) of 

fixed bitlength n
• computation “easy”

• One Way Hash Function (OWHF)
– preimage resistance
– 2nd preimage resistance

• Collision Resistant Hash Function (CRHF): OWHF +
– collision resistant
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Preimage resistance

h

?

h(x)

preimage

2n

• in a password file, one does not store
– (username, password)

• but
– (username,hash(password))

• this is sufficient to verify a password
• an attacker with access to the   

password file has to find a preimage

Second preimage resistance

h

x

h(x)

h

?

h(x’)=

2nd preimage

2n 

≠
• transmit x over a fast but insecure 

channel
• transmit h(x) over a slow but 

authenticated channel (e.g., read it 
over the phone)

• an attacker has access to x but he 
can only fool the recipient if he 
finds a second preimage of x

• another example: 
– compute a hash of the files on a USB 

stick before you lend it to your friend
– you can write down the hash value
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Collision resistance (1/2)

hh

x

=

≠
collision

2n/2

h(x’)h(x)

• hacker Alice prepares two versions 
of a software driver for the O/S 
company Bob
– x is correct code
– x’ contains a backdoor that gives Alice 

access to the machine

• Alice submits x for inspection to Bob

x’

• if Bob is satisfied, he digitally signs 
h(x) with his private key 

• Alice now distributes x’ to users of 
the O/S; these users verify the 
signature with Bob’s public key

• this signature works for x and for x’, 
since h(x) = h(x’)!

Collision resistance (2/2)

hh

x

=

≠
collision

2n/2

h(x’)h(x)

• in many cryptographic protocols, 
Alice wants to commit to a value x 
without revealing it

• Alice picks a secret random string r 
and sends y = h(x || r) to Bob

x’

• in a later phase of the protocol, Alice 
reveals x and r to Bob and he 
checks that y is correct

• if Alice can find a collision, that is 
(x,r) and (x’,r’) with x’ ≠ x she can 
cheat

• if Bob can find a preimage, he can 
learn x and cheat
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Relation between definitions (informal!)

• preimage resistant  ⇒ 2nd preimage resistant
– take a preimage resistant hash function; add an input bit b and 

replace one input bit by the sum modulo 2 of this input bit and b

hxm-1

x0…x m-2

hxm-1

x0…x m-2

⊕
xm

x

x• 2nd preimage resistant ⇒ preimage resistant
– if h is OWHF, h is 2nd preimage resistant but not preimage

resistant: h(x) =  0 || x  if  |x| ≤ n                
1 || h(X)  otherwise

• collision resistant ⇒ 2nd preimage resistant

Brute force (2nd) preimage

• multiple target second preimage (1 out of many): 
if one can attack 2t simultaneous targets, the effort to find a 
single preimage is 2n-t

• multiple target second preimage (many out of 
many): 
– time-memory trade-off with Θ(2n) precomputation and storage Θ(22n/3) 

time per (2nd) preimage: Θ(22n/3) [Hellman’80] 
– full cost per (2nd) preimage from Θ(2n)  to Θ(22n/5) [Wiener’02]

(if Θ(23n/5) targets are attacked)

• answer: randomize hash function with a parameter S 
(salt, key, spice,…)



The Cryptographic Hash Function Crisis
Bart Preneel

Onassis Foundation Science Lecture Series 
Network and Information Security 

Krete, June 2010

The birthday paradox

• given a set with S elements
• choose r elements at random (with replacements) 

with r « S
• the probability p that there are at least 2 equal 

elements (a collision) ≅ 1 - exp (- r(r-1)/2S)
• more precisely, it can be shown that 

– p ≥ 1 - exp (- r(r-1)/2S)
– if r < √2S  then p ≥ 0.6 r (r-1)/2S

Brute force collision search

• Consider the functional graph of h
h(x)x h

collision
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Brute force collision search

• low memory and parallel  
implementation of the birthday attack 
[Pollard’78][Quisquater’89][Wiener-van Oorschot’94]

• distinguished point (d bits) 
– Θ(e2n/2 + e 2d+1) steps with e the cost of one 

function evaluation
– Θ(n2n/2-d) memory
– full cost: Θ(e n2n/2) [Wiener’02]

l

c

l = c = (π/8) 2n/2

h(x)x h

Brute force attacks in practice

• (2nd) preimage search
– n = 128: 23 B$ for 1 year if one can attack 240 targets in 

parallel

• parallel collision search with low memory
– n = 128: 1 M$ for 8 hours (or 1 year on 100K PCs)
– n = 160: 90 M$ for 1 year
– need 256-bit result for long term security (30 years or more)
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Quantum computers

• in principle exponential parallelism
• inverting a one-way function: 2n reduced to 2n/2 

[Grover’96]
• collision search: 

– 2n/3 computation + hardware [Brassard-Hoyer-Tapp’98]
– [Bernstein’09] classical  collision search requires 2n/4 computation 

and hardware (= standard cost of 2n/2 )

Collision resistance

• hard to achieve in practice
– many attacks
– requires double output length 2n/2 versus 2n

• hard to achieve in theory
– [Simon’98] one cannot derive collision resistance from “general”

preimage resistance (there exists no black box reduction)

• hard to bypass:
– UOWHF (TCR, eSec) randomize hash function after choosing the 

message [Naor-Yung’89]
• how to enforce this in practice?

– randomized hashing: RMX mode [Halevi-Krawczyk’05]
H( r || x1 ⊕ r || x2 ⊕ r || … || xt ⊕ r )

• needs e-SPR (not met by MD5)
• issues with insider attacks (i.e. attacks by the signer)

28
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Formalizing the definitions is tricky

• for collision resistance: formalization requires a family of 
functions indexed by a parameter S
– alternatively, one can formalize human ignorance  [Stinson’06], [Rogaway’06]

• for (2nd) preimage resistance, one can choose the challenge 
(x) and/or the key (S) that selects the function. This gives 
three flavors [Rogaway-Shrimpton’04]:
– random challenge, random key (Pre and Sec)
– random key, fixed challenge (ePre and eSec - everywhere)  

(eSec=UOWHF)
– fixed key, random challenge (aPre and aSec - always)

• can an attacker use S’ ≠ S? 
• complex relationship (see figure on next slide)

Relation between properties 

[Rogaway-Shrimpton’04] 

[Stinson’06]

[Reyhanitabar-Susilo-Mu’10]
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Properties in practice

• collision resistance is not always necessary
• other properties are needed:

– pseudo-randomness if keyed (with secret key)
– pseudo-random oracle property
– near-collision resistance
– partial preimage resistance
– multiplication freeness 

• how to formalize these requirements and the 
relation between them?

Hash function history 101
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2010
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DES

AES

single 
block 
length

double 
block  
length

permu-
tations

RSA

ad hoc 
schemes

security 
reduction 
for 
factoring, 
DLOG, 
lattices

MD2 
MD4 
MD5 

SHA-1

RIPEMD-160

SHA-2

Whirlpool

SHA-3

SNEFRU

Dedicated
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Performance of hash functions - Bernstein
(cycles/byte) AMD Intel Pentium D 2992 MHz (f64)
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AES- hash
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Applications

• protection of passwords
• data authentication
• digital signatures
• confirmation of knowledge/commitment
• micropayments

• pseudo-random string generation/key derivation
• construction of MAC algorithms, stream ciphers, 

block ciphers,…
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Iteration
(mode of compression function)

35

Hash function: iterated structure

split messages into blocks of fixed length and hash 
them block by block with a compression function f

efficient and elegant
but …

f

x1

IV
f

x2

H1
f

x3

H2
f

x4

H3
g
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Security relation between f and h

• iterating f can degrade its security
– trivial example: 2nd preimage

f
x1

IV
f

x2

H1
f

x3

H2
f

x4

H3 g

f
x2

IV = H1
f

x3

H2
f

x4

H3 g

Security relation between f and h (2)

• solution: Merkle-Damgård (MD) strengthening 
– fix IV, use unambiguous padding and insert length at the end 

• f is collision resistant  ⇒ h is collision resistant
[Merkle’89-Damgård’89]

• f is ideally 2nd preimage resistant  ⇔ h is ideally 2nd

preimage resistant [Lai-Massey’92] ?
• few hash functions have a strong compression function 

• very few hash functions treat xi and Hi-1 in the same way

• composition results for preimage resistance tricky
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Security relation between f and h (3)

length extension: if one knows h(x), easy to compute h(x || y) 
without knowing x

f

x1

IV
f

x2

H1
f

x3

H2
f

x4

H3 g

Solution: output transformation

f
x1

IV
f

x2

H1

f
x3

H2 H3= h(x)

f

x1

IV
f

x2

H1

f
x3

H2
f

y

H3 H4= h(x || y)

Some attacks on MD: 1999-2005

• multi-collision attack and impact on concatenation [Joux’04]

– the concatenation of 2 iterated hash functions (g(x)= h1(x) || h2(x)) is as 
most as strong as the strongest of the two (even if both are 
independent)  

• long message 2nd preimage attack [Dean-Felten-Hu'99], [Kelsey-
Schneier’05]

– if one hashes 2t message blocks with an iterated hash function, the 
effort to find a second preimage is only 2n-t+1 + t 2n/2+1

– appending the length does not help here!
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How (NOT) to strengthen a hash function?
[Joux’04]

• answer: concatenation
• h1 (n1-bit result) and h2 (n2-bit result)

h2h1

g(x) = h1(x) || h2(x)

• intuition: the strength of g against 
collision/(2nd) preimage attacks is the 
product of the strength of h1 and h2

— if both are “independent”

• but….

Multi-collisions  [Joux ’04]

• now h(x1||x2||x3||x4) = h(x’1||x2||x3||x4) = h(x’1||x’2||x3||x4) =   …
= h(x’1||x’2||x’3||x’4)  a 16-fold collision

f

x1,  x’1 

IV H1
f

x2, x’2

H2
f

x4,  x’4x3, x’3

H3
f

• for IV: collision for block 1: x1,  x’1 

• for H1: collision for block 2: x2,  x’2 

• for H2: collision for block 3: x3,  x’3
• for H3: collision for block 4: x4,  x’4 
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How (NOT) to strengthen a hash function?
[Joux’04]

• h1 (n1-bit result) and h2 (n2-bit result)
• find a 2n2/2-fold multi-collision for h1, that is, a huge set of 

messages that map to the same value under h1

h2h1

g(x) = h1(x) || h2(x)

• by the birthday paradox, with 
high probability two of the 
values in this set will collide 
under h2

• cost
• computation n2 . 2n1/2 + 2n2/2

• memory  2n2/2

2n2/2 messages with 
the same image

under h1

Formal results [Joux ’04]

consider h1 (n1-bit result) and h2 (n2-bit result), with n2 ≥ n1.
concatenation of 2 iterated hash functions (g(x)= h1(x) || h2(x)) 

is as most as strong as the strongest of the two (even if both 
are independent)

• cost of collision attack against g at most 
n2 .  2n1/2 + 2n2/2 <<  2(n1 + n2)/2

• cost of (2nd) preimage attack against g at most
n2 . 2n1/2 + 2n1 + 2n2  << 2n1 + n2

• if either of the functions is weak, the attacks may work better
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Summary

Improving MD iteration

salt + output transformation + counter + wide pipe

f

x1

IV
f

x2

H1

f

x3

H2

f

x4

H3 g

1

salt salt salt salt salt

|x|

security reductions well understood
many more results on property preservation

2 3 4

2n2n 2n 2n2n 2n n
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Improving MD iteration

• degradation with use: salting (family of functions, 
randomization)

• extension attack + PRO preservation: strong 
output transformation g (which includes total 
length and salt)

• long message 2nd preimage: preclude fix points
– counter f → fi [Biham-Dunkelman]

• multi-collisions, herding: avoid breakdown at 2n/2

with larger internal memory: known as wide pipe
– e.g., extended MD4, RIPEMD, [Lucks’05]

Compression functions

48
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Block cipher (EK) based

Davies-Meyer

xi E

Hi-1

Hi

Miyaguchi-Preneel

xi E

Hi-1

Hi

• output length = block length

• 12 secure compression functions (in ideal cipher model)

• requires 1 key schedule per encryption

Block cipher (EK) based

• which assumptions are needed on the block 
cipher E to prove MD iterated Davies-Meyer 
secure?
– standard model: no security results (PRF/PRP 

is not sufficient)
– ideal cipher model: ok to prove collision 

resistance and (second) preimage resistance
• can this be relaxed?

– not PRO preserving (length extension problem)
– PRA preserving
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Permutation (π) based

Large permutation

xi

π
H1i-1 H1i

H2iH2i-1
πxi

HiHi-1

pad

sponge MD6

Permutation (π) based: sponge

Examples: Panama, RadioGatun, Grindahl, Keccak (no buffer)

x1

π

H10

H20

x2

π

x3

π

x4

π π π π

h1

π

h2

absorb buffer squeeze
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Permutation (π) based

small permutation

JH
xi

π
H1i-1 H1i

H2iH2i-1
Hi

Grøstl

xi

π2
Hi-1

π1

Iteration modes

• security of simple modes well understood
• powerful tools available

• analysis of slightly more complex schemes very 
difficult

• which properties are meaningful?
• which properties are preserved?
• MD versus sponge is still open debate
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Tree structure: parallelism

[Damgård’89], [Pal-Sarkar’03]

f

x1

f

f f

x2 x3 x4 x5

f

f f

x6 x7 x8

SHA-{0,1,2}

56
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MDx-type hash function history

MD5

SHA

SHA-1

SHA-256
SHA-512

HAVAL

Ext. MD4

RIPEMD

RIPEMD-160

MD4 90

91
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95

02

The complexity of collision attacks
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brute force: 1 million PCs (1 year) or US$ 100,000 hardware (4 days)
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MD5 [Rivest’91]

• 4 rounds (64 steps)
• pseudo-collisions [denBoer-Bosselaers’93] 
• collisions for compression function [Dobbertin’96]

• collisions for hash function
– [Wang+’04] – 15 minutes
– …
– [Stevens+’09] – milliseconds
– brute force (264): 1M$ 8 hours in 2010

• 2nd preimage in 2123 [Sasaki-Aoki’09]

MD5

• advice (RIPE since ‘92, 
RSA since ‘96): stop 
using MD5

• largely ignored by 
industry until 2009 
(click on a cert...)



The Cryptographic Hash Function Crisis
Bart Preneel

Onassis Foundation Science Lecture Series 
Network and Information Security 

Krete, June 2010

• fix to SHA-0
• add rotation to message expansion: quasicyclic code, dmin = 25 

wj ← (wj−3 ⊕ wj−8 ⊕ wj−14 ⊕ wj−16 ) >>> 1   j > 15

SHA-1 [NIST’95]

• 53 steps  [Oswald-Rijmen’04 and Biham-Chen’04]
• 58 steps [Wang+’05]
• 64 steps in 235 – highly structured [De Cannière-Rechberger’06-’07]:  
• 70 steps in 244 – highly structured [De Cannière-Rechberger’06-’07]: 
• 70 steps 239 (4 days on a PC) [Joux-Peyrin’07]
• 269 [Wang+’05] 
• 263 ? [Wang+’05 - unpublished]
• 251 ? [Sugita+’06 ]
• 262 ? [Mendel+’08 - unpublished]
• 252 ?? [McDonald+’09 - unpublished]

co
lli

si
on

s

preimages for 48/80 steps in 2160-ε [Aoki-Sasaki’09]

SHA-1

0
10
20
30
40
50
60
70
80
90

2003 2004 2005 2006 2007 2008 2009 2010

SHA-1

[Wang+’04]

[Wang+’05]
[Mendel+’08]

[McDonald+’09]

[Manuel+’09]

Most attacks 
unpublished/withdrawn

[Sugita+’06]

log2 complexity

prediction: collision for SHA-1 in the next 12-18 months
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NIST and SHA-1

Impact of collisions

• collisions for MD5, SHA-0, SHA-1
– 2 messages differ in a few bits in 1 to 3 512-bit input blocks
– limited control over message bits in these blocks
– but arbitrary choice of bits before and after them

• what is achievable for MD5?
– 2 colliding executables/postscript/gif/…[Lucks-Daum’05]
– 2 colliding RSA public keys – thus with colliding X.509 

certificates [Lenstra+’04]
– chosen prefix attack: different IDs, same certificate 

[Stevens+’07]
– 2 arbitrary colliding files (no constraints) in 8 hours 

for 1 M$
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Rogue CA attack 
[Sotirov-Stevens-Appelbaum-Lenstra-Molnar-Osvik-de Weger ’08]

Self-signed 
root key

CA1 CA2 Rogue CA

User1 User2 User x

• request user cert; by special 
collision this results in a fake CA 
cert (need to predict serial 
number + validity period) 

• 6 CAs have issued certificates signed with MD5 in 2008:
— Rapid SSL, Free SSL (free trial certificates offered by RapidSSL), TC 

TrustCenter AG, RSA Data Security, Verisign.co.jp

• 6 CAs have issued certificates signed with MD5 in 2008:
— Rapid SSL, Free SSL (free trial certificates offered by RapidSSL), TC 

TrustCenter AG, RSA Data Security, Verisign.co.jp

impact: rogue CA
that can issue certs
that are trusted by 
all browsers

impact: rogue CA
that can issue certs
that are trusted by 
all browsers

Impact of MD5 collisions

• digital signatures: only an issue if for non-
repudiation

• none for signatures computed before attacks 
were public (1 August 2004)

• none for certificates if public keys are 
generated at random in a controlled 
environment

• substantial for signatures after 1 August 
2005 (cf. traffic tickets in Australia)



The Cryptographic Hash Function Crisis
Bart Preneel

Onassis Foundation Science Lecture Series 
Network and Information Security 

Krete, June 2010

And (2nd) preimages?

• security degrades with number of applications
• for large messages even with the number of 

blocks (cf. supra)
• specific results: 

– MD2: 273  [Knudsen+09]
– MD4: 2102  [Leurent’08]
– MD5: 2123 [Sasaki-Aoki’09]
– SHA-0: 52 of 80 steps in 2156.6 [Aoki-Sasaki’09]
– SHA-1: 48 of 80 steps in 2159.3 [Aoki-Sasaki’09]

HMAC

• HMAC keys through the IV (plaintext) 
– collisions for MD5 invalidate current security proof of HMAC-MD5

Rounds in f2 Rounds in f1 Data complexity

MD4 48 48 272 CP + 277 time
MD5 64 33 of 64 2126.1 CP
MD5 64 64 251 CP & 2100 time (RK)
SHA-0 80 80 2109 CP
SHA-1 80 53 of 80 298.5 CP

f2

f1

xK1

K2
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Upgrades

• RIPEMD-160 is good replacement for SHA-1

• upgrading algorithms is always hard

• TLS uses MD5 || SHA-1 to protect algorithm 
negotiation (up to v1.1)

• upgrading negotiation algorithm is even 
harder: need to upgrade TLS 1.1 to TLS 1.2

SHA-2 [NIST‘02]

• SHA-224, SHA-256, SHA-384, SHA-512
– non-linear message expansion
– more complex operations
– 64/80 steps
– SHA-384 and SHA-512: 64-bit architectures

• SHA-256 collisions: 24/64 steps [Sanadhya-Sarkar’08]

• SHA-256 preimages: 43/64 steps [Aoki+’09]

• implementations today faster than anticipated

• adoption
– industry may migrate to SHA-2 by 2011 or may wait for SHA-3 
– very slow for TLS/IPsec (no pressing need)
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SHA-3
(bits and bytes)

71

NIST AHS competition (SHA-3)

• SHA-3 must support 224, 256, 384, and 512-bit message 
digests, and must support a maximum message length of at 
least 264 bits

64
51

14
5 1

0
20
40
60
80

Q4/08 Q3/09 Q4/10 Q2/12

round 1
round 2

final

Call: 02/11/07

Deadline (64): 31/10/08

Round 1 (51): 9/12/08

Round 2 (14): 24/7/09

Standard: 2012



The Cryptographic Hash Function Crisis
Bart Preneel

Onassis Foundation Science Lecture Series 
Network and Information Security 

Krete, June 2010

The Candidates

Slide credit: Christophe De Cannière

Preliminary Cryptanalysis

Slide credit: Christophe De Cannière
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End of Round 1 Candidates

a

Slide credit: Christophe De Cannière

Round 2 Candidates

a

Slide credit: Christophe De Cannière
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Compression function/iteration

Sponge
Sponge-like

Sponge

Truncated/Sponge
2-permutation

Sponge

Sponge

Permutation MD/HAIFABlock cipher

JH-specificJH

Luffa

MD/TreeDavies-MeyerSkein
MDPGV variantSIMD

HAIFADavies-MeyerShavite-3
Shabal

Keccak

Hamsi
MDGrøstl

Fugue
HAIFAECHO

Cubehash
EMDPGV variantBMW

HAIFAPGV variantBlake

Properties: bits and bytes
[Watanabe’10]
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Security Reductions [Mennink-Andreeva-Preneel’10]

Issues arisen during Round 1

• round 1 was very short; several functions received 
no outside analysis

• 7 out of 14 designs were tweaked at the beginning of 
round 2

• security: 
– controversy around pseudo-collision attacks and memory 

requirements
– proofs have not helped much to survive

• performance: roughly as fast or faster than SHA-2
– tunable security/performance tradeoff: nominal parameters?
– large memory (> 100 bytes) may be a problem for small devices
– can we exploit 64 or 128 cores? Intel AES instruction?
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Rebound Attack

a new variant of differential cryptanalysis

developed during the design of Grøstl [MRST09]
already successfully applied to Whirlpool and the SHA-3 
candidates Twister, Lane, and reduced versions of others

Slide credit: Christian Rechberger

Security: SHA-3 Zoo
http://ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo
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Performance of hash functions
[Bernstein09] http://bench.cr.yp.to/ebash.html
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SHA-4?

• an open competition such as SHA-3 is bound to 
result in new insights between 2009-2012

• only few of these can be incorporated using 
“tweaks”

• the winner selected in 2012 will reflect the state 
of the art in October 2008

• nevertheless, it is unlikely that we will have a 
SHA-4 competition before 2030

Hash functions: conclusions

• SHA-1 would have needed 128-160 steps 
instead of 80

• 2004-2009 attacks: cryptographic meltdown but 
not dramatic for most applications
– clear warning: upgrade asap

• theory is developing for more robust iteration 
modes and extra features; still early for building 
blocks

• nirwana: efficient hash functions with security 
reduction


