(7/4/2023)

Laser wakefield acceleration: in Nature and lab applications

Toshiki Tajima, Norman Rostoker Chair Professor, UCI, USA part 1:

 Conventional accelerator to LWFA
 How to make dynamically stable wake: high phase velocity paradigm
 Wakefields in Nature
 Laser Driven Wakefields
 LWFA led the High Field Science

From Conventional Accelerator to Laser Accelerator in Plasma

20th Century, the Electron Century Basic Research Dominated by Massive and Charged Particle Accelerators

J. J. Thomson

→ Now photons (and photon-assisted electrons)

21st Century; the Photon Century Could basic research be driven by the massless and chargeless particles; Photons?

C. Townes (laser invention, 1960) → Mourou-Strickland (laser compression, 1985) G. Mourou (Inst. Zetta- Exawatt Science and Technology)

Tajima-Dawson (laser-driven wakefields, 1979)

Conventional accelerators → Laser Plasma Accelerators

• Atoms and solids:

nucleus vs. bound electrons

→ Plasma (no more breakdown problem)

However, plasma is (often) <u>unstable</u>? → Can we make it stable? no binding force → need **new organizational** principle

Also collective force (~ N^2): large fields

→ photons drive <u>high phase velocity</u> wakefields (<u>stable</u>)
Laser-driven collective (large GeV/ cm) plasma waves

What is *collective force*?

How can a Pyramid have been built?

Individual particle dynamics → Coherent and collective movement Some early learning from negative experiences (Veksler, 1956; Rostoker, 1960's) Collective acceleration (Veksler, 1956; Tajima & Dawson, 1979) Collective radiation (N² radiation) Collective ionization (N² ionization) Collective deceleration (Tajima & Chao, 2008; Ogata, 2009)

Robust Wakefields

Dynamically Sustained State in Plasma : Wakefield

Water structure that is moving is dynamically stable

Cf. "Bicycle-tire principle" for stability Some similarity and some difference with wake

too **slow**

fast enough

(Lessons I learned from early negative experiences --> next page)

Phase velocity and stability (learn from the water wave case)

Example of water wave:

Phase velocity of water wave

 $v_p \sim \sqrt{d}$, d: water depth

Shallow water

- \rightarrow 1. amplitude A ~ 1 / \sqrt{d}
- \rightarrow 2. wave slows down: $v_p \downarrow$
- → 3. wave begins to trap particles begins to break (exceeds Tajima-Dawson field)

Laser Wakefield (LWFA) (1979):

Wake phase velocity >> water movement speed maintains coherent and smooth structure

Tsunami **phase velocity** becomes ~0, causes **wavebreak** and **turbulence**

Strong beam (of laser / particles) drives plasma waves to saturation amplitude: $E = m\omega v_{ph}/e$

No wave breaks and wake peaks at v≈c

Wave **breaks** at v<c

Relativistic coherence \rightarrow relativistic structure formation

Relativistic nonlinearity under intense laser

Basic Concepts

• **Ponderomotive force** (longitudinal)

 \leftarrow magnetic Lorentz force of laser, $a_0 v_g$

Wakefields

 \leftarrow triggered by **ponderomotive force** (charge separation----plasma waves, $\omega_p v_{ph}$)

(Here $v_{ph} \sim c >> v_{th}$)

 \leftarrow resonance condition: positive side of wave (π / k_p)

Plasma instability: how to avoid?

High phase velocity paradigm
 Wave trapping of particles: trapping width v_{tr} (O'Neil, 1965)

Tajima-Dawson Field $E = m\omega_p c / e$ (1979)

 \leftarrow wave breaking (saturates and trapping when $v_{ph} = v_{tr}$)

 Wakefield: dynamically sustained stable structure in plasma <u>Structure Formation</u> (as opposed to plasma instabilities)

Wakefield saturation

Universal Universe of Wakefields

Ranges of wakefields

Wake

Wake by a duck

Nature (or mother duck) showed me (1968-69) when I was an undergrad student Walking by a lake toward U. Tokyo.

Wakefields in nuclei (in quark-gluon plasma)

Maldacena

Maldacena (string theory) method: QCD wake (Chesler/Yaffe 2008)

Rotational twist onto magnetic field thrust \rightarrow

Jets and their elongation \rightarrow

Stable plasma and wave propagation

(Tajima-Shibata, 1997 Takahashi-Tajima, 2000 Ebisuzaki-Tajima, 2014)

Paradigm Shift in astrophysical plasma

Instabilities dominant in plasma science

<u>Structure formation</u> via nonlinear dynamics

1. jets: structure, dynamically stable

2. accretion disk disturbance (MRI) driven excitation of wake at the root of the jets

$a_0 \sim \text{as large as O(10^{10})}$

Philosophy espoused and reviewed in

Tajima et al., RMPP 4, 7 (2020), Ebisuzaki et al. (2014)

https://link.springer.com/article/10.1007/s41614-020-0043-z

[Also in the textbook; T. Tajima and K. Shibata, "Plasma Astrophysics" (Addison-Wesley, 1997)]

PeV γ from Crab Nebula

Can we see manifestation of quantum gravity, Lorentz variance in high energy γ? How PeV electrons accelerated?

The Crab Pulsar, a city-sized, magnetized neutron star spinning 30 times a second, lies at the center of this composite image of the inner region of the well-known Crab Nebula. The spectacular picture combines optical data (red) from the Hubble Space Telescope and x-ray images (blue) from the Chandra Observatory, also used in the popular Crab Pulsar movies. Like a cosmic dynamo the pulsar powers the x-ray and optical emission from the nebula. accelerating charged particles and producing the eerie. glowing x-ray iets. Ring-

Prophetic picture (2000)

NS-NS collision triggers→

QGP (Quark-Gluon plasma) Shocks /gravitational waves Accretion disk Jets

Alfven waves and EM waves Wakefield acceleration GRB (gamma bursts)

Figure 8. A schematic illustration of the proposed concept.

Neutron star-neutron star collision

Fig. 5. Gamma-ray emission detected by Fermi and Integral satellites from the neutron star merging event (GW178017) delayed by 1.7 seconds compared with gravitational wave burst [79]. This time difference may be explained by the time to build-up the system for the acceleration of charged particles, described in the present

Observation of LWFA evidence in Nature (astrophysics)

- Review article by us (Ebisuzaki-Tajima-Barish): IJMP D (2023)
- Prediction of <u>gamma emission</u> by **LWFA** by NS-NS collision (Tajima et al. book, 2000)

- Barish: discovery of simultaneous emission of <u>gravitational wave</u> with <u>gamma</u> from NS-NS collision (Nobel, 2017)

Laser Driven Wakefields

Laser-driven Bow and Wake

Theory of wakefield toward high energies

$$\Delta E \approx 2m_0 c^2 a_0^2 \gamma_{ph}^2 = 2m_0 c^2 a_0^2 \left(\frac{n_{cr}}{n_e}\right), \quad \text{(when 1D theory applies Tajima / Dawson, 1979)}$$
In order to avoid wavebreak,
$$a_0 < \gamma_{ph}^{1/2}, \quad \text{where}$$

$$\gamma_{ph} = [n_{cr}(\omega) / n_e]^{1/2}$$

$$p_{lasma density (cm^3)} \quad n_e = 10^{21}/\text{cc} (1eV \text{ photon})$$

$$n_e = 10^{16} (\text{gas}) \longrightarrow 10^{23}/\text{cc}(\text{solid})$$

$$L_d = \frac{2}{\pi} \lambda_p a_0^2 \left(\frac{n_{cr}}{n_e}\right), \quad L_p = \frac{1}{3\pi} \lambda_p a_0 \left(\frac{n_{cr}}{n_e}\right), \quad \text{pump depletion length}$$

Enabling technology: laser revolution

G. Mourou invented Chirped Pulse Amplification (1985)

Laser intensity exponentiated since,

to match the required intensity for Tajima-Dawson's LWFA (1979)

Thousand-fold Compactification

Laser wakefield: thousand folds gradient (and emittance reduction)

First experimental realization: Nakajima,...., Tajima, (1994)

Laser pulse-driven stable wakfefields (plasma oscillations) : observed

GeV in the Palm

First GeV on few cm (W. Leemans et al)

The late Prof. Abdus Salam

At ICTP Summer School (1981), Prof. Salam summoned me and discussed about laser wakefield acceleration.

Salam: 'Scientists like me began feeling that we had less means to test our theory. However, with your laser acceleration, I am encouraged'. (1981)

He organized the Oxford Workshop on laser wakefield accelerator in 1982.

Effort: many scientists over many years to realize his vision / dream High field science: spawned

(NB: Prof. C. Rubbia et al. discovered his bosons at CERN, 1983)

LWFA led the High Field Science

also, LWFA opened up applications → see part 2

International Committee for Ultra Intense Lasers

International promotion of highest intensity lasers and its applications (Oxford, 2004) We ignited world-wide interest: s.a. IZEST (International Center for Zepto- and Exawatt science and Technology) ELI (Extreme Light Intrastructure) High Energy Physic (and intense laser) interests:

Young-Kee Kim Then-Fermilab Deputy Director former President, APS

CERN

Thank you!

discussions and inspirations from:

G. Mourou, D. Strickland, late J. Dawson, late Norman Rostoker, K. Nakajima, B. Barish, T. Ebisuzaki, the late Y. Takahashi, K. Shibata, S. Bulanov, M. Downer, Y. K. Kim, T. Esirkepov, R. Heuer, G. Huxtable, C. Seiders, D. Fisher, Y. Papamastorakis

A latest book

photonics

Edited by Toshiki Tajima and Pisin Chen Printed Edition of the Special Issue Published in Photonics

www.mdpi.com/journal/photonics