(7/4/23)

<u>High Density</u> LWFA: <u>Micrometric</u> Accelerator and Endoscopic Application

Toshiki Tajima, Norman Rostoker Chair Professor, UCI, USA

part 2:

1. LWFA and the Critical Density

- 2. New Materials at High Density LWFA
- 3. Micrometric LWFA and Endoscopic Application
- 4. Recent Simulations and Proof-of-principle Experiment

Collaborators: E. Barraza, S. Nicks, D. Roa, D. Strickland, B. M. Hegelich, P. Franke, F. Tamanoi, T. Kawachi, M. Mori, M. Kando, J. Sha, S. Iijima, P. Taborek Thanks to: G. Mourou, Y. Papamastorakis

Theory of wakefield : scaling laws

LWFA: Conventional Underdense vs Near Critical Density

Intensity scan to $a_0 < 1$ regime Transition to <u>near-critical density</u> $n_e \sim n_{cr}$

Density scan: <u>Near Critical Density</u> (in low intensity)

Barraza, Tajima, Strickland, Roa (Photonics, 2022)

Figure 3. Energy distributions, maximum kinetic energies, and laser to total particle energy efficiency with respect to plasma density for BWA simulations after 1 ps using gaussian lasers with intensities of $a_1 = 0.1$ and pulsewidth of 100 fs. The solid laser wavelength was held at $\lambda = 1$ µm

Carbon nanotubes on a substrate:

 \rightarrow toward Carbon Nanoforest (instead of plasma w/vacuum)

Laser Wakefield Acceleration near critical density

<u>Near critical density</u> ~ n_e = 10²¹/cc

gaseous plasma \rightarrow solid nanotube

Excitation of electron acceleration possible with $I \sim 10^{14} \text{ W} / \text{ cm}^3$

Coupling gets stronger near $n_e = 10^{21}/\text{cc}$ \leftarrow overlap of plasma waves with different v_p \leftarrow curved laser ω (k), varied v_a

no vacuum necessary!

(laser size and nanotubes do not scale in these cartoons)

Dispersion Relation: FFT(Log₁₀E)

- High Harmonic Generation
- Short Wavelength and Low Phase Velocity Electrostatic Waves allow for more efficient
 particle acceleration

Simulated cases of High Density LWFA with fiber laser ($/ \sim 10^{14} \, \text{W/cm}^2$)

Electron Acceleration vs a₀ and Pulse Width at low Intensities

Pump Intensity (W/cm ²)	Pulse Width (ps)	Time for keV energies (ps)
4×10^{13}	3	NA
$7 imes 10^{13}$	2	3
$1.4 imes 10^{14}$	1	3

- Electron Energy has is not strongly correlated to intensity
- Instead electron energy is more a function of total laser energy deposited onto target
- For simulation of $a_0=0.004$ and 3 ps pulsewidth, strong plasma waves were still developing after 10 ps simulation time.

28

University of

California, Irvine

Target Foil Simulations in time: $a_0 = 0.007 \rightarrow 10^{14} W/cm^2$ with 2 µm Target

Four-Wave Raman Cascade Excite Low Phase Velocity

Free-Space Laser vs. Fiber Laser

Fiber laser (currently we collaborate with Donna's fiber laser lab)

Page 14

Fiber laser technology

Application	Average Power	Pulse Width	Peak Power	Spatial Mode	Focused Intensity
Metal cutting (heat)	1 to 100 kW	Continous	same as average	ММ	$10^7 \mathrm{W/cm}^2$ (CW)
Semiconductor Processing	10 to 1000 W	1 to 100 ns	MW (10 ⁶ W)	MM/SM	10 ⁹ W/cm ² (peak)
Glass cutting (cold ablation)	> 10 W	≤ 0.5 ps	Hundreds of MW	SM	10 ¹³ W/cm ² (peak)
Portable LWFA (>10 keV eletrons)	1 to 10 W	≤1 ps	≥ GW (10 ⁹ W)	SM	$\geq 10^{14}$ W/cm ² (peak)

MM: multi-mode (spatial)

SM: single mode

hollow fiber laser

Dr. Donna Strickland on going

Under the collaboration with

←

Micrometric LWFA and its Application to Endoscopic Therapy

Conventional electron accelerator (and X-ray) for Therapy ← 5-10m (next room) →

Electron energies by accelerator: 6-20MeV

 \rightarrow X-rays

LWFA could provide high dose <u>"FLASH</u>" therapy

Furthermore, much tinier with fiber

 $L_e \sim 1 \text{ cm} / 10 \text{MeV} \rightarrow 10 \text{ micron} / 10 \text{keV}$ $\land \qquad \uparrow$ Body penetration Cancer cell size

Current radiotherapy applications (from skin, vagina, uterine, breast, etc.)

→ Much smaller, endoscopic in ours

(Prof. D. Roa)

In situ / endoscopic fiber delivery of electron radiotherapy of cancer (Roa et al, 2022)

Fiber laser drives in situ nanotube target

in front of cancer cells

→ Compactification, accurate (no collateral damage), and cheap (vacuum can be avoided)

Cost estimate comparison with Brachy therapies

$\mathbf{\Lambda}$

	<u>LWFA – HDR</u>	Iridium-192–HDR	Cobalt-60–HDR
Purchase Estimate	\$100K - \$300K	\$700K - \$900K	\$700K - \$900K
Room Shielding	None	\$200K - \$500K	\$200K - \$500K
Source Replacement	None	~\$10K every 4-6 months	~130K every 60 months
Downtime due to Source Replacement	None	1-2 days	1-2 days

(Prof. D. Roa, preliminary estimate)

Vector nanomedicine with high-Z metal to target cancer cells for electron radiotherapy

High-Z attached to the vector: stop electrons Nanoparticle vector: delivered to cancer cell

Nanomolecular vector medicine (after Prof. F. Tamanoi, 2022)

Recent Simulations and a Proof-of-principle Experiment

Proof-of-principle experiment of High Density regime LWFA

Experiment at KPSI, Japan (Sept-Oct., 2022) (Mori et al.)

Simulation: density dependence

Under Dense

Density Profile in the mm cavity : the channel with <u>near critical density</u> path

KPSI (Mori et al.2023)

(Roughly agreeing with the observed electron energies at KPSI up to 100keV) (E. Barraza)

Conclusions

- 1. LWFA acceleration to near the critical density
- 2. Coupling strongest near the critical density
- 3. Short pulse \rightarrow longer pulsed, beat wave
- 4. Micrometer acceleration, to 10keV electrons
- 5. Fiber laser possible: intensity $\sim 10^{14}$ W/cm²
- 6. At the tip of endoscope
- 7. Inside of the patient, look and shoot
 - no need for vacuum (e.g. carbon nanotube)
- 8. proof-of-principle experiment