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9 km

Overall view of LHC
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Application Total syst. 
(2007) approx.

System
sold/yr

Sales/yr
(M$)

System 
price (M$)

Cancer Therapy 9100 500 1800 2.0 - 5.0

Ion Implantation 9500 500 1400 1.5 - 2.5

Electron cutting and welding 4500 100 150 0.5 - 2.5

Electron beam and X rays irradiators 2000 75 130 0.2 - 8.0

Radio-isotope production (incl. PET) 550 50 70 1.0 - 30

Non destructive testing (incl. Security) 650 100 70 0.3 - 2.0

Ion beam analysis (incl. AMS) 200 25 30 0.4 - 1.5

Neutron generators (incl. sealed tubes) 1000 50 30 0.1 - 3.0

Total 27500 1400 3680

The development of state of the art accelerators for HEP has lead to : 
research in other field of science (light source, spallation neutron sources…)
industrial accelerators (cancer therapy, ion implant., electron cutting &welding...)

Industrial Market for Accelerators
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Plasma Accelerators : motivations

E-field max  ≈ few 10 MeV /meter (Breakdown) 
R>Rmin Synchrotron radiation

≈
Circle road

34 km
ParisLHC 

27 km

New medium : the plasma

Energy Length   Cost   

CERN
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RF Cavity Plasma Cavity

Electric field < 100 MV/m Electric field > 100 GV/m

V. Malka et al., Science 298, 1596 (2002)

1 m => 50 MeV Gain 1mm => 100 MeV

Compactness of Laser Plasma Accelerators
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Why is a plasma useful ?

electrons plasma oscillation

Plasma is an Ionized Medium  =>  High Electric Fields 
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Why is a plasma useful ?

electrons plasma oscillation

Plasma is an Ionized Medium  =>  High Electric Fields 
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The electron plasma frequency : ωp

x

Neutral 
plasma
Zne=ni
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The electron plasma frequency : ωp
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E = 𝜎/ℇ0 = neξe/ℇ0

F=qE



The electron plasma frequency : ωp
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V. I. Veksler, “Coherent Principle of Acceleration of Charged Particles.” Proceedings of 
the CERN Symposium on High Energy Accelerators and Pion Physics, vol. 1. Geneva, 
1956. Pages 80–83.
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1979 Relativistic plasma waves with Laser pulse

F=∇I

=> Laser wakefield

=> Laser beatwave

19The Onassis Foundation Science Lecture in Physics, Applications of Extreme Light, Heraklion, July 3-7 (2023)



The linear wakefield regime: GV/m electric field

electron density perturbation & longitudinal wakefield

The laser wake field : broad resonance condition 
τlaser∼𝜋/ωp with ωp ～ne1/2 i.e. 𝜆p ～1/ne1/2

wave in the wake of a 
boat 

T. Tajima and J. Dawson, PRL 43, 267 (1979)

F=-∇I

Linear wakefield : Ez = 1 GV/m for 1 
%  density Perturbation at 1018 cc-1vphaseepw=vglaser∼c

Ez (GV/m) ≈ δn/n ✕√n
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RF Cavity

Electric field < 100 MV/m
1 m => 100 MeV Gain

Plasma Cavity

Electric field > 100 GV/m

Non Linear Wakefield
V. Malka et al., Science 298, 1596 (2002)

1mm => 100 MeV

The non-linear wakefield regime : 100’s GV/m 
electric field
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Part I : Motivation, basis and principle

•Introduction : context and motivations

•Electron in a laser field

•Laser driven plasma wave : theory 

•Trapping Conditions
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Laser intensity: definition

The laser electromagnetic wave is given by :

Peak intensity:

For a gaussian beam at focus:

With peak intensity :
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where k0 is the laser wave vector and ω0 the laser pulsation



Propagation of gaussian beam

w

w0
zR

√2w0

pulse length cτ0

Rayleigh length for which I0 changes to I0/2: zR = πw02/λ0

example : λ0 =1μm, w0 = 20μm => zR = 1.2 mm

z
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Relativistic quantities & equation of motion

25The Onassis Foundation Science Lecture in Physics, Applications of Extreme Light, Heraklion, July 3-7 (2023)



The ponderomotive force :
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Relativistic quantities & equation of motion

(1) - c*(2) =>

(1) (2)

and

and
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Relativistic quantities & equation of motion
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Relativistic quantities & equation of motion
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Electron motion in intense fields :
Laser linear polarization along x and propagating along z : 

a0=0.1 a0=2
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•Electron in a laser field

•Laser driven plasma wave : theory 

•Trapping Conditions
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Fluid model : hypothesis & beams definitions

 Ions are immobile : τlaser<< 1/ωpi

 Plasma is a fluid of electrons : n(r,t), v(r,t)

 Plasma is cold :  vosc >> vth

 Plasma is underdense :  ωp << ω0

 Laser field :

 Envelop :

 Particle beam :
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Poisson’s equation : general case
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Fluid equation :

Conservation equation

Equation of motion for fluid electrons

Which can be rewritten with « L » laser - high frequency :
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Fluid equation : general case

We now linearize the  conservation equation in order to have the 
system of equations:

Equation of motion for fluid electrons

Which gives :
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Fluid equation : general case

General equation :

The potential is given by :

Which gives for laser only :
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Flowing window : in the laser frame
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Quasi static approximation

λp

L0
zR

pulse length L0=cτ0

Neglect the derivatives in τ versus ζ one

Physics meaning : adiabatic response of the laser due to the slow evolution of 

the laser
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Some notes
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Quasi static approximation

Solution of the equation =0 for 
(no perturbation before the laser pulse)

At 

For a gaussian beam,

Since a2 is an even function, the 
second term is nul, then:
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Solution of the envelop equation

Solution (after the gaussian laser pulse have gone):
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Solution for the density perturbation

From the Poisson’s equation, one then obtains

Longitudinal density perturbation :

Radial density perturbation :
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Resonance condition for Laser Wakefield

Gorbunov et al. Sov. Phys. JETP 66 (87)  

a0=1

laser

wakefield

In the laser wakefield the resonance is very broad

=>   30 fs @ 1.9x1018cm-3
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Twist movie: the resonance 
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Non Linear Plasma waves 1D : a0=2 (30fs)
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Non Linear Plasma waves 1D : a0=5 (30fs)
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F=-∇I

The Forced laser wakefield
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Snapshots of laser wakefield

N. H. Matlis et al. , Nature Physics 2006
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Snapshots of laser wakefield

N. H. Matlis et al. , Nature Physics 2006

Small amplitude wakes with flats wavefronts. a) probe phase shift 10TW, 30 fs at 0.95x1019cm-3.

b) Simulated wake density profile. c) same than a) at 5.9x1019cm-3. d) wake period versus ne.
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Accel./decel.-focusing/defocusing fields: Linear case

electron densitylaser

foc.
field

Ez

acc.
field

acc.
field

dec.
field

dec.
field

foc.
field

defoc.
field

defoc.
field

Er

a0=0.5
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a0=2
laser

Ez

acc.
field

acc.
field

dec.
field
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foc.
field

foc.
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Accel./decel.-focusing/defocusing fields: Linear caseAccel./decel.-focusing/defocusing fields: Non-Linear 
case
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1985-1995 How to excite a plasma wave ? LBW

The laser beat waves : τL>>Tp

ω1,k1

ω2,k2

F≈- ∇I
$$$$!

ω1-ω2=ωp
linear growth rate δ(t)=1/4 

a1a2ωpt
      => homogenous plasmas
saturation : relativistic, ion motion

Optical demonstration by Thomson scattering :

Clayton et al. PRL 1985,  Amiranoff et al. PRL 1992, Dangor et al. Phys. Scrypta 1990

Chen, Introduction to plasma physics and controlled fusion, 2nd Edition, Vol.1, (1984)

Train of short resonant pulses
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Analogy : oscillating mirror’s problem

Problem :

spectrometer
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Injection criteria : the surfer 

in the wawe
 reference frame

h = h0cos(ξ)

in the terrestrial
 reference frame
h = h0cos(z-vpt)
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conclusions :
- Trapped orbits allow 
higher energy gain

- One needs to transmit
enough velocity ΔV
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1 D maximum energy gain : Wmax: eEpLdeph

In plasma wave :
- E field is not homogenous
- Volume is phase space is 
conserved
- very small initial volume

external injection :
- Size≈ µm 
- Length≈ µm (fs)
- Synchronization ≈ fs
- Controle ?

=> very challenging with 
conventional 
accelerator
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Trapping energy : analogy electron/surfer

surfer initially at restsurfer with enough 
initial velocity

surfer initially at rest

surfer initially at rest

surfer with enough 
initial velocity

surfer with enough 
initial velocity
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Trapping energy : analogy electron/surfer
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Single electron dynamic in a plasma wave:
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Single electron dynamic in a plasma wave:
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Single electron dynamic in a plasma wave:
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Single electron dynamic in a plasma wave:
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1979 Relativistic plasma waves with laser pulse

F=∇I

=> Laser wakefield

=> Laser beatwave
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External injection of electrons in LBW

Scheme of principle of the first experiments : 
the laser Beat Wave (LBW)

laser beam

Electrons☺

☺

relativistic plasma
 waves

☺

☺
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1992-1994 Accelerated electrons in LBWF 

The 2-MeV electrons are accelerated up to ≈ 28 MeV
Electron spectra indicate an Efield of ≈ 2.8 GV/m

M. Everett et al., Nature 1994

Electron gain demonstration Few MeV’s:
Kitagawa et al. PRL 1992, Clayton et al. PRL 1993, N. A. Ebrahim et al., J. Appl. 

Phys.1994, Amiranoff et al. PRL 1995
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1998 Accelerated electrons in LWF

Electron spectra indicate an Efield of ≈ 1 GV/m

LULI/LPNHE/LSI/IC

e-spectrometer

injection magnet
PM Scintillators

1.4 m off axis parabole

laser energy and
focal spot diagnostic

1 
ns

 st
re

tc
he

d
 la
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r b

ea
m

vacuum tube
200 m from 

LULI

e-beam
(3 MeV, 0.2 mA)

interaction region
(He 0.1-4 mbars)

Compressor

Autocorrelator
2nd order
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1998 Accelerated electrons in LWF

2.5 J, 350 fs, 1017W/cm2, 0.5 mbar of He

F.  Amiranoff et al., PRL 1998

LULI/LPNHE/LSI/IC
The 3-MeV electrons are accelerated up to ≈ 4.5 MeV

Electron spectra indicate an Efield of ≈ 1.4 GV/m

3 3.5 4 4.5 5 5.5 6
energy (MeV)

100

101

102

103

noise level
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1992 How to excite a plasma wave:  The SMLWF

envelop modulation

enhances

laser

plasma wave

Self modulated laser wakefield scheme : cτlaser >> Tp 
(Andreev et al.,  Antonsen et al., Sprangle et al. 1992)

PL>Pc(GW)=17 nc/ne then wavebreaking can occur

z1 z2 z3

excites

Tp
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The Relativistic self focusing
For a gaussian beam, in vacuum near the focus : 

Diffraction :

w0

vᵠ1

vᵠ0

cδτ

θfoc
Relativistic self focusing :

ne/γ(r)

Ilaser

n(r) =[1- ne/ncγ(r)]2

laser

ZR

PL<Pc

PL>Pc
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Wave breaking 

1D picture : slides of electrons oscillate at ωp

When the trajectories crossed each other: wavebreaking

Which occurs when each slides displace by λp
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Wave breaking 
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1995 Relativistic wave breaking(RAL/IC/UCLA/LULI)

A. Modena et al., Nature (1995)

electron energy (MeV) frequency shift (ωp)
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ne=1.5×1019cm-3
ne=1.5×1019cm-3

ne=0.5×1019cm-3

ne=0.5×1019cm-3

• Multiple satellites : high amplitude plasma waves

• Broadening at higher densities

• Loss of coherence of the relativistic plasma waves
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2001 SMLWF with 10 Hz laser

Spectra : Emax increases when ne decreases

Parameters: ne=5×1019cm-3 & 1.5×1020cm-3, τL=35fs, E=0.6J, IL= 2×1019W/cm2
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V. Malka et al., Phys. of Plasmas 8, 6 (2001)
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2002 The Forced Laser Wakefield: the NL regime
Parameters: ne=1.5×1019cm-3, τL=35fs, E=0.6J, IL= 1×1018W/cm2 with kpw0>1
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V. Malka et al., Science 298, 1596 (2002)

f/20

3D PIC simulations

experimental data

*CARE project
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SMLWF / FLWF (ps/fs) :multiple/single bunch

V. Malka, Europhysics News,  April (2004)

............................................

laser

laser

electron density 
perturbation

electric field

electric field

electrons bunch

electrons bunches

SMLWF: ωpτ>>1 FLWF: ωpτ≈1
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2002 The Bubble regime

A.Pukhov & J.Meyer-ter-Vehn, Appl. Phys. B, 74 (2002)

VLPL, courtesy of A. Pukhov Golp, courtesy of L. Silva
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Bubble/blow-out regime : principle

surfing behind a wake boatlocalized self injection in the 
bubble/blow-out regime

A. Pukhov & J. Meyer-ter-Vehn,  Appl. Phys. B 74, 355-361 (2002), 

Highly non-linear regime : self-injection
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2005 The Bubble regime : theory/experiments

experiment
3D PIC 

simulations

divergence : 6 mrad

Experimental parameters : E=1J, 
τL=30fs, λL=0.8µm,  lL=3.2×1019W/cm2, 
ne=6×1018cm-3

J. Faure et al., Nature 431, 7008 (2004)
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2004 The Dream Beam
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SMLWF => FLWF => Bubble regime

SMLWF=>FLWF=>Bubble

V. Malka et al., Phys. of Plasmas 12, 5 (2005)
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2010 Sharp density ramp injection

K. Schmid et al., PRSTAB 13, 091301 (2010)

=>
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2013 Shock front injection 

A. Buck et al., PRSTAB 13, 091301 (2010)

=>
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2013 Shock front injection : LLC 

M. Burza et al., PRSTAB 16, 011301 (2013)

Laser wakefield acceleration using wire produced 
double density ramps
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Participants :                        

Acknowledgements :                

Part II : External and Self-Injection in LWF

•External injection : Laser wakefield and Beatwave experiments

•Self-injection :  Self-Modulated Laser and Forced Wakefield

•Bubble regime

• Ionisation Injection, Gradient and Longitudinal injection
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Towards a two stage plasma accelerator

V. Malka et al., PRSTAB, 2006

electron
density

Er

Ez

laser pulse

Small Laser amplitude a0=0.5 & Parabolic plasma channel

V. Malka et al., PRST-A 9, 9 (2006)
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Lbunch>λp Lbunch>λp

z-ct z-ctδn δn

Different phases =>

Different E field =>

100 % energy spread

electrons “in phase” =>

same E field =>

low energy spread

One needs Lbunch < 100 fs

Challenge for RF technology
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Towards a two stage plasma accelerator
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E=170 
MeV, 
Laser :  
9J, 150 
TW, 60fs

V. Malka et al., PRST-A 9, 9 (2006)

Wake simulations of injected 100 fs electrons bunch



E=170 
MeV, 
Laser :  
9J, 150 
TW, 60fs
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V. Malka et al., PRST-A 9, 9 (2006)

Wake simulations of injected 30 fs electrons bunch



E=170 MeV, Laser :  9J, 150 TW, 60fs
E=9 J 

P= 0.15 PW

a0=1.5

Parabolic channel:

 r0=47 µm,

 n(r)=n0 (1+0.585 r/r0)

n0 = 1.1×1017 cm-3 

3.5 GeV, with a relative energy spread FWHM of 
1%  and an un-normalized emittance of 0.006 mm
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Wake simulations of injected 30 fs electrons bunch



« Salle Jaune Laser » : Home made laser

R. Lehe

2 Joules in 2 laser beams of 30 
fs duration delivered at 1 Hz
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Colliding Laser Pulses Scheme

The first laser creates the accelerating structure
A second laser beam is used to heat electrons
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Set-up for colliding pulses experiment

Pump beam
670 mJ, 30 fs, 
Φfwhm=21×18 µm
I ~ 4×1018 W/cm2

Injection beam
130 mJ, 30 fs, 
Φfwhm=28×23 µm
I ~ 4×1017 W/cm2
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The colliding of two laser pulses scheme 
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Towards a Stable Laser Plasma Accelerators
Series of 28 consecutive shots with : a0=1.5, a1=0.4, ne=5.7×1018cm-3
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Tunability of the electrons energy

Zinj=25 μm

accelerating distance

J. Faure et al., Nature 444, 737 (2006) 
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Tunability of the electrons energy
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Tunability of charge & energy spread
Charge : controlling electrons heating processes => smaller ainj. means less heating and less 
trapping

Energy spread : Decreasing the phase space volume Vtrap of trapped electrons by reducing 
ainj. or by reducing cτ/λp by changing ne (i.e λp)

Evolution of injection volume with a1 for a0 = 2, ne = 7×1018cm-3. 
Fields are computed for the 1D case and the beatwave separatrix corresponds to the circular polarization case.

In practice, energy spread and charge are correlated: Decreasing a1 decreases the 
charge but also Vtrap, and in consequence the energy spread
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Tuning the charge & energy spread with the 
plasma density

in
cr

ea
sin

g 
th

e 
pl

as
m

a 
d

en
sit

y

E=67 MeV
ΔE=3 MeV
Qpk=2.4pC

E=77 MeV
ΔE=10 MeV
Qpk=23.2pC

E=76 MeV
ΔE=10.0 MeV
Qpk=17pC

E=84 MeV
ΔE=24 MeV
Qpk=25.4pC

E=64 MeV
ΔE=16 MeV
Qpk=96pC
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Charge from 60 pC to 5 pC, ΔE from 20 to 5 MeV 

Tuning charge & energy spread with 
the inj. laser intensity

C. Rechatin et al., Phys. Rev. Lett. 102, 164801 (2009)

114The Onassis Foundation Science Lecture in Physics, Applications of Extreme Light, Heraklion, July 3-7 (2023)



Observables : correlation charge/energy spread/energy

e- beam dynamics in plasma wave: beam loading

Parameters: ne=1.5 1019cm-3,τ =35fs, E=0.6J, I=2 1018 W/cm2

Laser wakefield
ne=7 1018cm-3,τ = 30fs, a0 = 0.5

E-beam wakefield
nb/ne=0.11, τ = 10fs, dFWHM=4µm 
(Q=7pC)

The end of the bunch 
experiments a modified 
wakefield

Limitation of the accelerated charge
Influence on energy and energy spread

T. Katsouleas et al., (1987), M. Tzoufras et al., Phys. Rev. Lett.,101 (2008) 
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Nb: very few electrons at low energy
δE/E=5% limited by the spectrometer

Clear correlation !

e- beam dynamics in plasma waves: beam 
loading
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Low charge 
=> large energy spread

Optimal charge 
=> flat E field
=> low energy spread

High charge
=>End of the beam decelerated
=>high energy spread

Observables : correlation charge/energy spread/energy

e- beam dynamics in plasma wave: beam loading
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1% relative energy spread ! 

C. Rechatin et al., Phys. Rev. Lett. 102, 194804 (2009)
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Bunch length measurement : CTR diagnostic

124The Onassis Foundation Science Lecture in Physics, Applications of Extreme Light, Heraklion, July 3-7 (2023)



1.5 fs RMS duration : Peak current of 4 kA

Spectral features
Peak at 3 µm
Coherent

Analytic CTR model
Gaussian pulse shape
Measured e-beam :
 Charge
 Energy
 Divergence

Bunch duration
Peak wavelength
Peak intensity

O. Lundh et al., Nature Physics, 7 (2011)

1.5 fs RMS duration : Peak current of 4 kA
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Laser Plasma Accelerators : Outline

Introduction : context and motivations

Colliding laser pulses scheme

Injection in a density gradient

Manipulating the longitudinal momentum

Manipulating the transverse momentum

 Applications

Conclusion and perspectives
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Conclusions and Perspectives

Injector

Injector
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[Schmid et al., 2010; Buck et al., 2013] 

Injection in a sharp density gradient

laserne

Sharp density ramp is 
requires to localize the 
injection and reduce the 
energy spread !

Density drop => increase of 
the cavity lenght

the bubble expansion 
allows electrons injection 
and energy gain.

128The Onassis Foundation Science Lecture in Physics, Applications of Extreme Light, Heraklion, July 3-7 (2023)



Sharp density ramp is 
requires to localize the 
injection and reduce the 
energy spread !

Injection in a sharp density gradient

Density drop => increase of 
the cavity lenght

the bubble expansion 
allows electrons injection 
and energy gain.

ne laser
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Sharp density ramp is 
requires to localize the 
injection and reduce the 
energy spread !

Injection in a sharp density gradient

Density drop => increase of 
the cavity lenght

the bubble expansion 
allows electrons injection 
and energy gain.

ne laser
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Sharp density ramp is 
requires to localize the 
injection and reduce the 
energy spread !

Injection in a sharp density gradient

Density drop => increase of 
the cavity lenght

the bubble expansion 
allows electrons injection 
and energy gain.

ne laser
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Electrons

Plasma cavity before
the shock front

Plasma cavity after
the shock front

Injection in a shock front : principle

Laser
Propagation 

du laser

Simulations ANSYS Fluent

Propagation 
du laser

Electrons

Laser
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Injection in a shock front : pur helium gas

R. Lehe

Generation of a stable e-beam (n2 = 7.5 x 1018 cm-3) :
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Injection in a shock front : pur helium gas

xblade

0

Electron energies is controlled by the position of the blade

134The Onassis Foundation Science Lecture in Physics, Applications of Extreme Light, Heraklion, July 3-7 (2023)



Conclusions and Perspectives

Focus Booster

Booster
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Overcoming the dephasing limit

R. LeheR. Lehe

Since the laser group velocity is < c, when electrons energy is getting 
~c they dephase
electrons reach the center of the cavity and start to be deccelerated
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Overcoming the dephasing limit

R. LeheR. Lehe

Overcoming the dephasing limit

Since the laser group velocity is < c, when electrons energy is getting 
~c they dephase
electrons reach the center of the cavity and start to be deccelerated
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R. Lehe

The reduction of the 
bubble size at the right 
position by increasing 
suddently the density 
resets the electrons 
phase.

Electrons can start again 
to gain energy.

[Katsouleas et al., 1986; Sprangle et al., 2001] 

Overcoming the dephasing limitOvercoming the dephasing limit

laserne
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Overcoming the dephasing limit

R. LeheR. Lehe

Overcoming the dephasing limitOvercoming the dephasing limit

laser The reduction of the 
bubble size at the right 
position by increasing 
suddently the density 
resets the electrons 
phase.

Electrons can start again 
to gain energy.

ne
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laser The reduction of the 
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position by increasing 
suddently the density 
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to gain energy.
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Overcoming the dephasing limit

R. Lehe

Overcoming the dephasing limitOvercoming the dephasing limit

laser The reduction of the 
bubble size at the right 
position by increasing 
suddently the density 
resets the electrons 
phase.

Electrons can start again 
to gain energy.

ne
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pump
1.2 J, 
28 fs

gas jet

gas jet

dipole 
magnet

electrons 
beam

Lanex
Camera

Wafer silicium
500 µm 

probe

Overcoming the dephasing limitOvercoming the dephasing limitOvercoming the dephasing limit: experiments
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Wafer silicium 500 µm

supersonic nozzle 1.5 mm

The density transition 
is controlled by 
changing the wafer 
position

Overcoming the dephasing limit: results
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Experiment Calder-Circ PIC Simulations
2D dispersion corrected spectra

w/o shock

with shock

Energy gain

Angularly integrated spectra

w/o shock

with shock

Rephasing AND Energy Boost

Energy gain
 = 130 MeV

 (~50%)

Overcoming the dephasing limit: experimental 
results & simulations
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Conclusions and Perspectives

Injector Focus Booster

Combining Injector and Booster

+
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laserne

Combining Injector and Booster
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ne laser

Combining Injector and Booster
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ne laser

Combining Injector and Booster
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ne laser

Combining Injector and Booster
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ne laser

Combining Injector and Booster
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ne

Combining Injector and Booster
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ne laser

Combining Injector and Booster
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Energy boost of a mono-energetic e-beam

boosting a monoenergetic 
electron beam

E. Guillaume et al., PRL 115 (2015)
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Energy boost of a mono-energetic e-beam

boosting a monoenergetic 
electron beam
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E. Guillaume et al., PRL 115 (2015)



Energy boost of a mono-energetic e-beam

boosting a monoenergetic 
electron beam
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E. Guillaume et al., PRL 115 (2015)



Energy boost of a mono-energetic e-beam

boosting a monoenergetic 
electron beam
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E. Guillaume et al., PRL 115 (2015)



Energy boost of a mono-energetic e-beam

boosting a monoenergetic 
electron beam
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E. Guillaume et al., PRL 115 (2015)
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Laser Plasma Accelerators : Outline

Introduction : context and motivations

Injection in a density gradient

Manipulating the longitudinal momentum

Manipulating the transverse momentum

Conclusion and perspectives
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Conclusions and Perspectives

Accelerator

Simple plasma devices produced with a  
single laser pulse

Injector

Booster

Lensing
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Manipulating the p⊥ momentum : emittance 
definition

Goal :

reduce the divergence of the beam by 
manipulating the transverse phase space

electrons beam emittance :

transverse
size

beam 
divergence

typical divergence of the e-beam     : ~ 4 mrad
typical transverse size of the e-beam < 1 µm emittance is 

dominated by the 
divergence

too large for example for some applications (FEL, …)

}

} }
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Manipulating the p⊥ momentum : principle

Acceleration & 
betatron oscillation

ne

n1

n2
z
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initiale 
divergence

Manipulating the p⊥ momentum : principle

Acceleration & 
betatron oscillation

ne

n1

n2
z
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free drift

initiale 
divergence

Manipulating the p⊥ momentum : principle

ne

n1

n2
z
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Collimation

finale 
divergence

Manipulating the p⊥ momentum : principle

ne

n1

n2
z
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Laser beam:
0.9 J, 28 fs, 12 microns FWHM
Focused with a 1 m OAP at the 
entrance of a 3 mm gas jet 
n1=9.2x1018cm-3

Acceleration stage

Focusing stage
1 mm nozzle with variable n2

Variable Ld

Manipulating the p⊥ momentum : 
experimental set-up
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Focusing stage parameters :
Ld = 1.8 mm

n2 = 3.9 x 1018 cm-3

Divergence after the lens (FWHM)

Divergence reduction ~ 2.6 ± 0. 7

C. Thaury et al., Nature Comm. 6, 6860 (2015)

Demonstration of beam focusingManipulating the p⊥ momentum : 
demonstration of the laser plasma lens

𝜎𝛳 = 1. 6± 0.2 mrad
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X rays source with Laser Plasma accelerators

- naturally synchronized (ideal for pump-probe experiments)
- compacts and useful for small scale laboratories

Betatron radiation

Compton sc
attering

Nonlinear Th
omson

1 keV 100 keV10 keV
2003 

2004
2011

X ɣXuv
1 MeV

Collimated beams (mrad)
Femtosecond duration (few fs)
Micron source size 
High peak brightness (>1020 ph/s/mm2/mrad2)

Common features: 

10 MeV

Bremsstr
ahlung

2010
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Moving charge radiation

Radiated energy

Velocity Acceleration

Rc

β

β
.

Electron 

n unit vector in the observation direction

To efficiently produce X-ray radiation we need relativistic electrons 
undergoing oscillations (synchrotron radiation)
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Betatron oscillation properties:

Betatron radiation properties

Longitudinal Force

Transverse 
force
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Experimental profiles

3 μm
1.5 μm

3 μm

Calculated profiles                   Electron orbits

Betatron radiation properties
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Betatron signal variation with density

K. Ta Phuoc et al, PRL 2006

experimental data
3 PIC simulation

A. Rousse et al., Phys. Rev. Lett., 93, 135005 (2004)
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● Phase contrast

d = λR/2πσ

σ

R

X source

object

Detector
● Absorption contrast

Contrast is due to the 
absorption difference in the 
object

It works only with object with 
important absorption difference

Interferences can reveal object 
interfaces
Biological objects have phase 
contrast 1000 times higher than 
absorption contrast
It requires a very high spatial 
coherence (10’s microns) :

X ray Phase Contrast Radiography
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Parameters of the source :
- Ec = 12.3 keV
- 2.2×108 photons/0.1%BW/sr/shot at 10 keV
- N = 109 photons in 28 mrad (FWHM) divergence beam

X ray Phase Contrast Radiography: Experiments

laser beam 2.5 J / 30 fs 

Betatron X ray radiation

X ray diagnostic
Al filter

Off axis parabola

object to image

Be window

deviated electron 
beam

dipole 
magnet

He gas jet

S. Fourmaux et al., Opt. Lett. 36, 2426 (2011)
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Bee contrast image :
- Contrast  of  0.68 in single shot.
- Very tiny details can be observed in single shot that disappear 
in multi shots.

1 shot 13 shots

S. Fourmaux et al., Opt. Lett. 36, 2426 (2011)

Phase contrast imaging : results
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X Contrast Phase Imaging

M. Bech et al., Scientific reports (2013)

Early detection of tumour with an 10 micrometers resolution

X ray Absorption Imaging X ray Contrast Phase Imaging
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Inverse Compton Scattering

ωx=4γ2ω0 Doppler upshift : high energy photons with modest e- energy :

For example : 20 MeV electrons can produce 10 keV photons
                    200 MeV electrons can produce 1 MeV photons

The number of photons depends on the ne and a02 : nx ∝ a02 x ne

Duration (fs), source size (µm) = e- bunch length and electron beam size 

Spectral bandwidth : ΔE/E ∝ 2Δγ/γ, γ2Δθ2
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Inverse Compton Scattering : new scheme

A single laser pulse

A plasma mirror reflects the laser beam

The back reflected laser collides 
with the accelerated electrons

No alignment : the laser and the
 electron beams naturally overlap

Save the laser energy !

50 TW / 30 fs 
laser

He gas jet

Foil, blade

X rays

so
lid

 fo
il

Back reflected laser pulse Plasma mirror

High energy
X ray beam
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Inverse Compton Scattering : Exp. set-up

50 TW / 30 fs 
laser

He gas jet

Foil, blade

X rays

Magnet

CCD

electrons

Electron spectra X ray beam profile

Scintillator screen
50 micron Al foil
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Inverse Compton Scattering : Exp. results

● The foil must be placed at the right to maximize a0 and the electrons energy

Compton scattering

electron energy decreases laser intensity decreases
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Inverse Compton Scattering : Compton Spectra 

B

Al 2.1 mm

Cu 0.5 mm

Cu 1 mm

Cu 2 mm

Cu 4 mm

Cu 8 mm

Cu 12 mm

A

● About 108 ph/shot,  a few 104 ph/shot/0.1%BW@100 keV

● Broad electron spectrum => broad X ray spectra
● Brightness: 1021 ph/s/mm2/mrad2/0.1%BW @100 keV 

calculation with test particle : a0=1.2

K. Ta Phuoc et al., Nature Photonics (2012)
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Inverse Compton Scattering : Source size 

● In this image the resolution is limited 
by the detector and the small magnification 

5 mm
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Inverse Compton Scattering : Compton Spectra 

Courtesy of S. Karsh
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Some examples of applications : radiography

High resolution radiography of dense object with a low divergence, point-like electron source
Non destructive dense matter inspection

A. King et al., Mrs Bulletin 94, 8 (2006)

50 µm γ source size

Y. Glinec et al., PRL 94, 025003 (2005)
A. Ben-Ismail et al.,  Nucl. Instr. and Meth. A 629 (2010), App. Phys. Lett.  98, 264101 (2011)
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Applications: Non Destructive Control

Artistic view of non 
destructive control machine
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11,7%
Breast cancer:
2 261 419 new cases

11,4%
Lung cancer:
2 206 771 new cases

5,6%
Stomach cancer:
1 089 103 new cases

4,7%
Liver cancer:
905 677 new cases

46%
Other cancers:
8 879 843 new cases

10%
Colorectal cancer:
1 931 590 new cases

Total 
New cases: 19,3 M

Deaths: 10 M

Estimated number of new cases in 2020, all cancers, both sexes, all ages*

*World Health Organization: press release No 238 (2020)

12%

11%

10%

7%

6%
5%3%

46%

7,3%
Prostate cancer:
1 414 259 new cases

3,1%
Cervix uteri cancer:
604 127 new cases
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Particles @ radiation for therapy 
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Multi-beams irradiation: a request
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X-rays radiotherapy

one beam irradiation

depth in tissue

d
os

e

multiple beams irradiation
X ray beam

patient body

tumour
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one beam irradiation

depth in tissue
d

os
e multiple beams irradiation

electron beam

patient body

tumour

RT requires multi-fields irradiation : VHEE case
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X rays machine for radiotherapy
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Some examples of applications : radiotherapy

dose pencil

Isodose curves for different levels, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50 Gy/nC. 
The source to surface distance is a 15 cm, b 30 cm, c 60 cm, d 100 cm 

Y. Glinec et al. Med. Phys. 33, 1, 155-162 (2006), in coll. with DKFZ
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Some examples of applications : radiotherapy

Epic=120 MeV
ΔE=20 MeV
Qpic=30pC
Θ=4.5mrad
Dmax=1Gy/tirPolystyrene piece (10 mm thick)

Fuji Film Detector (40x40 mm2)
Phantom is at 430 mm from the source

O. Lundh et al., to be submitted

210The Onassis Foundation Science Lecture in Physics, Applications of Extreme Light, Heraklion, July 3-7 (2023)



Some examples of applications : radiotherapy

simulations of prostate cancer 
with 7 irradiation beams

250 MeV electrons X rays IMRT Difference

T. Fuchs et al. Phys. Med. Biol. 54, 3315-3328 (2009)

A comparison of dose deposition with 6 MeV X ray an improvement of the quality of a 
clinically approved prostate treatment plan. While the target coverage is the same or 
even slightly better for 250 MeV electrons compared to photons the dose sparing of 
sensitive structures is improved (up to 19%). 

Transversal view  

sagittal view  

211The Onassis Foundation Science Lecture in Physics, Applications of Extreme Light, Heraklion, July 3-7 (2023)



No difference in DNA damage foci irradiated 
by p-Laser, p-Conv, and X rays

Dose responses of DNA damage foci formation and of cell survival. (A) 
Representative immune-fluorescent images of cells obtained 1h and 24h after 
exposure to the indicated doses of laser driven protons (LDP, dotted square), 
conventional accelerated protons (CAP, triangles) and X-rays (x cross). The 
negative controls (0 Gy) were sham-irradiated

Average dose rate : 2.1 Gy/min (Δt = 20 s
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Fast Fractionation effects

*Cell lines were exposed to 
a      fixed number of LDP 
bunches   with a variable 
delay between  shots, from 
60 to 2 seconds. 

*Hence the total irradiation 
time varied from 15 to 
540 seconds, which 
changes the overall         
“average” dose rate. 

radiosensitive colorectal cancer cells HCT116WT and 
Its radioresistant counterpart HCT116 p53-/-p53

E. Bayart et al., Scientific Reports, s41598 (2019)
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Low
energy

Magnetic 
chicane

electrons
undulator

High 
energy

HHG beam 
Seeds

Laser 
beam

10 meter

FEL 
radiation

FEL experiment on Seeding mode with LPA

in collaboration with Marie 
Emmanuelle
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Towards compact X-ray beams based on LPA
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Concept for ultra compact X rays beam

I. Andriyash et al., Nat. Communications, 5736 (2014)
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Undulating with plasma fields
Varying electron energy
Energy                 200 / 400 / 600 MeV

Undulator emission
Photon energy          12 / 47 / 106 keV
Brightness             0.5 / 2 / 4.5×1023s.u.
Angular sizes                 0.85×1.7 mrad

Laser plasma nanostructured SR source
- Quasi-monoenergetic collimated
spectrum
- Tunability 𝜆u, 𝜀e

- Brightness ∼ ɣb2

- Source brightness level 1023 s.u.
- Interaction length ≲ 1 mm
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Laser-Driven Plasma Linac: «Artistic view»

W. Leemans et al., Phys. Today, March 2009
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V. Malka Phys. of Plasma 19, 055501 (2012)

plasma accelerator 
stage 0.1 to 1m, 

laser :10x50 m + focal of 5-10 m, 𝜼 = few %

BT

Beam transport : 
1, 10 m to up to few 
km in the last stages 

𝜼 = 1%

𝜼 = ? %

overall wall-plug efficiency:10-3,10-4,  i.e. for a 1 MW e, e+ 
beam, required power of 1-10 GW

100 of kHz-PW Laser reliability, plasma discharge, reliability, etc..  

Concept of Laser-Driven Plasma Linac:Challenges
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Concept of Laser-Driven Plasma Linac:Challenges

1 PW laser at high rep rate (>100Hz): today in the best 1 Hz

Plasma and vacuum chambers

Transport between stages

Thermal effects on the guiding structure wall

External guiding/self-guiding

Collimation and beam filtering

Accelerating plasma structure: linear (<1GV/m) or non-

linear (>few GV/m to 100s GV/m)

High efficiency laser driver : today in the best 1%
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Acknowledgements :                

Laser Plasma Accelerators : Outline

Introduction : context and motivations

Colliding laser pulses scheme

Injection in a density gradient

Manipulating the longitudinal momentum

Manipulating the transverse momentum

 Applications

Conclusion and perspectives
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Conclusions

Accelerators point of view : 
 Good beam quality & Monoenergetic dE/E down to 1 %     √
 Beam is very stable                                                   √
 Energy is tunable: up to 400 MeV                                           √
 Charge is tunable: 1 to tens of pC                                      √
 Energy spread is tunable: 1 to 10 %                                          √
 Ultra short e-bunch : 1,5 fs rms                                                    √                   
 Low divergence : 2 mrad                                                            √
 Low emittance1-3 : < 𝜋.mm.mrad                                               √
 With PW class laser : peak energy at 4.5 GeV                          √

1S. Fritzler et al., Phys. Rev. Lett. 92, 165006 (2004), 2C. M. S. Sears et al., 
PRSTAB 13, 092803 (2010), 3E. Brunetti et al., Phys. Rev. Lett. 105, 215007 (2010)

223The Onassis Foundation Science Lecture in Physics, Applications of Extreme Light, Heraklion, July 3-7 (2023)



Perspectives

Results extremely important for :
Designing future accelerators
Compact X ray source (Thomson, Compton, Betatron, or FEL)
Applications (chemistry, radiotherapy, medicine, material 
science, ultrafast   phenomena studies, etc...)

V. Malka et al., Nature Physics 4 (2008), E. Esarey et al. , Rev. Mod. Phys. 81, 1229 (2009)

S. Fourmaux et al., 
Opt. Lett. 36, 13 (2011)

First X rays betatron 
contrast images

Courtesy of K. Krushelnick
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Perspectives 2 for LPA

Long term possible applications (>40-50 years):
High energy physics that will depend on the laser technology 

evolution, on laser to electron transfer efficiency, on progress of 

multistage design, acceleration of positron, etc...)

Relevant applications in medicine, radiobiology, material science

Compact FEL with moderate average power (10 Hz system)

Compact X ray source (Thomson, Compton, Betatron, or FEL)

Short term perspective (< 10 years):

225The Onassis Foundation Science Lecture in Physics, Applications of Extreme Light, Heraklion, July 3-7 (2023)



Conclusions and Perspectives

By improving the control of the electron motion with 
intense lasers one can shape the electric field and 
manipulate the beam properties in the phase space.

As a consequence, Laser Plasma Accelerators have 
made significant progresses delivering stable, reliable high 
quality and high current e-beams.

Applications in medicine (radiotherapy, cancer imaging, 
security) are almost here.

Compact FEL based on LWFA is one very important 
challenge that has been identified by the community.

V. Malka et al., Nature Physics 4 (2008), V. Malka Phys. of Plasma 19, 055501 (2012)
E. Esarey et al. , Rev. Mod. Phys. 81 (2009), S. Corde et al., Rev. Mod. Phys. 85 (2013)

Conclusion & perspectives
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Conclusions and Perspectives

Boost

Focus 
Accelerator

Simple plasma devices produced with a  single 
laser pulse

Inject
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Jet 2: He (1% N2),   plasma density 2.8x1018 cm-3

Laser B:  on-target energy ~ 1J, linearly polarized (horizontal)
Exp. Probe image

Plasma density

Visualization of the wakefield dynamics
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Pure LWF

Mixed PWF and LWF

Electron injection in LWF

Pure PWF

Transition from the laser to the plasma wakefield
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Transition from the laser to the plasma wakefield
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Transition from the laser to the plasma wakefield
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Transition from the laser to the plasma wakefield
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Transition from the laser to the plasma wakefield
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Transition from the laser to the plasma wakefield
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Transition from the laser to the plasma wakefield
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Transition from the laser to the plasma wakefield
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Transition from the laser to the plasma wakefield
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Transition from the laser to the plasma wakefield
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Transition from the laser to the plasma wakefield
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A journey in the lab…
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